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Overview:

Neutrino Oscillations
The NOVA Experiment

First v, Disappearance Results
(arXiv:1601.05037v2)

First v, Appearance Results
(arXiv:1601.05022v1)
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Neutrino Oscillations:



Neutrino Oscillations:
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* Neutrinos can be described in one of two different bases:
flavor or mass.

* Neutrino mixing is described by 3 real rotation angles and a
CP violating phase factor, 6.

* All three rotation angles have been measured, but we don’t
yet know what delta is.



Neutrino Oscillations:
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Neutrinos can be described in one of two different bases:
flavor or mass.

Neutrino mixing is described by 3 real rotation angles and a
CP violating phase factor, 6.

All three rotation angles have been measured, but we don’t
yet know what delta is.



Neutrino Oscillations:
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* Neutrinos can be described in one of two different bases: -« B
flavor or mass.
* Neutrino mixing is described by 3 real rotation angles and a
CP violating phase factor, 6.
* All three rotation angles have been measured, but we don’t Leptons
yet know what delta is.
H .
( R
* The mixing is very different in the quark and lepton sectors! E BB




Open Questions:

Neutrino Mass Hierarchy:

* It has not yet been determined
if my>m,, m,orm;<my, m,.

* Has implications for OvBp and

the Majorana nature of the
neutrino.

The “octant” of 6,;:

* Itis not known if 6,5 >45° or
0,5, < 45°.

* Helps determine the texture of

the PMNS mixing matrix.

CP violation in the lepton sector:

e A good measurement of 6 has
not yet been made.

* |srelated to baryon
asymmetry.

o

increasing mass

-

“normal”
v, I

“inverted”
v, s
vy |




Neutrino Oscillations:

2

Flavor oscillation in general: P(vg - vg) = Z U*ajUBje—iijL/ZE
J
. . (1.27Am3,°L
v, survival probability: P(vﬂ - U.u) ~ 1 — sin?(26,5)sin? ( - 32 )
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Neutrino Oscillations:

2
Flavor oscillation in general: P(va - VB) = Z U*ajUBje“imsz/ZE
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Neutrino Oscillations:

2
Flavor oscillation in general: P(vg - vg) = Z U*ajUBje—iijL/ZE
. ., [(1.27Am5,%L
v, survival probability: P(vﬂ - uﬂ) ~ 1 — sin?(26,5)sin? ( - 32 )
2 2 2 l ) l
Ami}' =m; —m} A23

v, appearance probability:

Vu - Ve}) Paem + Psor + 21/ Paem Psor[cos(A3z)cos(8) + sin(Az;)sin(8)]

sin?(A3, ¥ al) "—" = neutrinos

(A31)°

(A3 + aL)2 "+" = anti — neutrinos

.2 — a=GpgN,/V2
sin“(+al) Fe
= 2 in2 2
Pso; = c0s*(033)sin*(203) (Fal)? (421) N, = electron density in Earth

Patm = Sin2 (@23)Sin2 (2@13)
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Neutrino Oscillations:

2
Flavor oscillation in general: P(vg - vg) = Z U*ajUBje—iijL/ZE
. ., [(1.27Am5,%L
v, survival probability: P(Uu - Uu) ~ 1 — sin?(26,5)sin? ( - 32 )
2 2 2 l ) J
Ami}' =m; —m} A23

v, appearance probability:

Vu - Ve}) Paem + Psor + 21/ Paem Psor[cos(A3z)cos(8) + sin(Az;)sin(8)]

_ _ sin?(A4; F al) "—" = neutrinos
Patm = sin?(0,3)sin?(203) >/(A31)? _ _
(A3q tal) "+" = anti — neutrinos
(Fal) a = GpNe/V2

si
e 2 sa2 2
Pso1 = €05%(023)sin*(20;2) Fal)? (821) N, = electron density in Earth

matter effect: caused by v, scattering off e as they travel
through the Earth...



Neutrino Oscillations:

2
Flavor oscillation in general: P(vg - vg) = Z U*ajUBje—iijL/ZE
J
. . (1.27Am3,°L
v, survival probability: P(vﬂ - Uu) ~ 1 — sin?(26,5)sin? ( - 32 )
2 — . 2 2 ' i J

v, appearance probability:

P((V_u) - (V_e}) ~ Pytm + Psop + 2 Pathsol[Cos(A32 Sin(ABZ

"—" = neutrinos

A31)2

Patm = Sinz (@23) in2 (2@13

"+" = anti — neutrinos
» _ . 2(29 )sin2(¢aL) A , a= GFNe/\/E
sol =\€057(Uz3 51N 12 (Fal)? (821) N, = electron density in Earth

octant hierarchy CP violation

Is 8,5 > 45° or Ism; >m, oris I & #0?
6,3 <45°? my<m,?
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Neutrino Oscillations:

v, appearance probability:
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Neutrino Oscillations:

v, appearance probability:

(V_u) - Ve)) Patm + Psor + 21/ Pgem Psor[cos(A3z)cos(8) + sin(Azy)sin(6)]

1 2 LT " " .
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' NOVA
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The NOVA Experiment:



The NOvVA Experiment: NuMI Beam

. o NuMI neutrinos
NuMI - Neutrinos at the Main Injector (onward to MINOS and

NOvA far detectors) neutrino beams
provides a 10 usec pulse every 1.33 sec \ =3 ' |
currently operating at > 500 kW AT
averaging 85% uptime
expected to reach 700 kW this year

NOVA Far Detector (Ash River, MN)
- I 11@5 jgggggegor{Soudan, MN)

O Milwaukee

Fermilab
< _

Ch|cagg“




The NOvVA experiment is 14 mrad off-axis:

v, CC/6E20 POT / kton /0.1 GeV

gives us a narrowly peaked v energy
spectrum at 2 GeV

2 GeV = oscillation max for 810 km
helps reduce NC backgrounds

15

10

The NOvVA Experiment: NuMI Beam
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The NOvVA Experiment: Detectors

To 1 APD pixel

Right: The NOvA cell is

composed of extruded PVC

filled with a liquid

scintillator. A looped fiber

collects scintillation light

and transmits it to an

avalanche photo-diode

(APD.) typical

charged »~
particle
path

NV
v &

WA

Above: NOVA has 2 detectors, near and far. Each is Cells are 4 cm x 6 cm and in

composed of alternating, orthogonal planes of the fa'r detector are 15.5 m
extruded PVC. long, in the near detector,

Far =» 14 kton, 810 km from Fermilab, on the surface they are 4 m long. w'\‘/'

A\
Near =» 300 ton, 1 km from the beam source, 105 m
underground

Far Left: The NOvA APD showing the pixels used to
read out 32 cells.

Near Left: The interface to the APD showing both
ends of each of the fibers from 32 cells.
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The NOvVA Experiment: Detectors

,a proton : : U+p A simulated numu CC event showing a long
A : muon track.

"""""" — vu+N—>u+p

e+p A simulated nue CC event showing an
ELEFs electron shower.
"fE e, -
EMShOWe [ =)
4 Vo+N —>e+p
o 0 + p A simulated NC event with a m°® showing an
EEEEEE: EM shower displaced from the vertex.
é’ap* "faa

vy+N—>ml+p

(simulated 2 GeV events)

NOVA is a totally active tracking calorimeter.

The detectors are designed with low-Z materials (mineral oil and PVC) so as to enhance the differences
between muon tracks, showers caused by electrons, and showers caused by pi-zeros.

— Moliere radius =11 cm
— EM radiation length =40 cm

20



Near Detector Event Display
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Far Detector Event Display
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Far Detector Event Display
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Calibration:

Compute the attenuation curve for each

fiber individually using through-going cosmic

muons.

 Compute the absolute energy scale for the
whole detector using stopping cosmic

muons.

Corrected response / cm

80

60

40
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Far Detector Data
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Reconstruction:

Vertexing: Identify a global event K
vertex using a Hough transform as W
guidance. CC events: 11 cm vertex x ce _nFH
resolution :

Clustering: Find clusters in

angular space around the vertex. / {
Match clusters between views using
dE/dx.

Tracking: Trace particle trajectories with a Kalman filter tracker that
uses a model for multiple scattering. Also have other, faster and lighter-
weight trackers for calibration and monitoring tools.

- o—
— -
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NOvVA Data Collection:

Data Summary:
* Feb 6t 2014 — May 15t 2015
* Began collecting the FD data while still under construction.

* Added each “diblock” (a unit of 64 detector planes) as soon as it was fully

commissioned and physics-ready.

e The non-static detector size is also modeled in the simulations.

Protons-on-target in data set: 3.45x10%° POT
Fraction of detector operational: 79.4% (POT-weighted average)

Full-detector-equivalent exposure: 2.74x10%° POT-equiv

Only 7.6% of our full exposure!

Partial Far Detector Full Far Detector
during construction (14 diblocks)
(6 diblock example)

26



v, Disappearance Results:

27



vV, CC Event Selection:

First apply basic containment cuts...

Muon ID

Use a 4-variable kNN algorithm to

identify muons:
* track length
« dE/dx along track (shown top right)
e scattering along track
* proportion of lateral energy
distribution consistent with muon MIP

Keep events with muon ID > 0.75.

|
w

ND, 1.66x10%° POT NOVA Preliminary

x10°
T T T | ]
C —— Simulated v, CC ]
[~ Simulated Background ]
N e Data ]
- Y —
u R o ™ ]
-2 -1 0 1

dE/dx Log-likelihood
ND, 1.66x10%° POT NOvVA Preliminary
1 T — 1 T T

— Simulated v, CC
Simulated Background
e Data

T IIIIITTI T lllllnl TTTTm—1 IIIII[T
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Far Detector Cosmic Rejection:

* We expect ~¥65,000 cosmic rays in-time with the NuMI beam spills per day. The
expected number of contained v, CC events per day is only a few.

 Containment cuts will remove 99% of the cosmics.

Good spills | ) We-u.se a boosted-
I decision-tree (BDT)
B B algorithm that takes
Data quality _ ; ; : input from
B e reconstruction
Cosmic rej. _ variables to reject the
= = remaining cosmics.
Containment - 5 | 5 5 5
= 5 Cosmic background —  All cuts together give
NC rejection — - GG _ prodiotion (max. mixing us > 15:1 s:b.
E<5Gev L  Cosmics are reduced
1 R I S by 107!
1 10 10* 10° 10* 10° 10° 10’ b

Number of events in the spill window



Energy Estimation:

muon

Reconstructed muon track:
length = E, —

bad,. .
. Onic g
Hadronic system: Vstem

2 Eyisivle = Ehag

cells

NOVA Preliminary

o
-
(&)

—=— FD
—e— ND

Reconstructed v, energy is

— — Neutrino spectrum

c
0 - .
5 - -
o I ]
the sum of these two: © 010} .
_ > - -
E,= E” + Eyaq S - -
C ™~ —
Q = -
o © 0.05 —
Energy resolution at S . P ) 1
beam peak ~7% 5 | 5 K i
L

o ! g 1, _

- 0.00 T ] . LT"“%——-_;.__.___
' 1 2 3 4 5

True Neutrino Energy (GeV) -



Far Detector Prediction:

(1) Estimate the underlying true energy distribution of selected ND events

(2) Multiply by .expected Far/Near event ratio and v,—»v, oscillation probability
as a function of true energy

(3) Convert FD true energy distribution into predicted FD reco energy distribution

Systematic uncertainties assessed by varying all MC-based steps

ND Events

True Energy (GeV)

0.1 8
x106
— ND Data 2.74x10% FD POT-equiv.
— Base Simulation 1.66x10%° ND POT
— Data-Driven Prediction
G I
5
4 4
3 —~ = -3
1 o ] = -1
1 1 L X106 il X10'3 I | L 1 1 1 1 1
% 50 50

1 2 _ 3 4 ' 040 20 140 00 1 2 3 4
ND Estimated Energy (GeV) ND Events/GeV F/N Ratio P(v,—v,) FD Events/GeV FD Estimated Energy (GeV)
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Systematics:

100

Most of our systematic &0
uncertainties have relatively

little influence on the result ?Z,’ 60
:

i 40

Hadronic energy syst. is
one with a noticeable effect ===
(impact reduced by ND-to-FD

prediction procedure) ol

Uncertainties assessed

Hadronic Energy
(14% shift, equiv. to 6% shift in v;)
Neutrino Flux

(beam modeling, hadron transport)
Absolute and Relative Normalizations

Neutrino Interactions
(GENIE, Intranuke modeling)

I+II!IIIIIII

Illlllllllll

t

;

I I 1 1 I T l 1 1 1 T I 1 I I I I 1 1 T 1

ND, 1.66 x 10°° POT

—e— Data

Data (w/0 14% offset)
—— Simulated Selected Events
Simulated Background

e
Hadronic Energy (GeV)

2.5 3

* NCand v_background rates
(100% each)
e Calibration, light-levels
(hit energy, attenuation, thresholds)
e Oscillation parameter uncertainties
(current world knowledge)
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Far Detector selected v, CC candidate
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Far Detector selected v, CC candidate
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Far Detector selected v, CC candidate
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vV, CC Results:

33 events selected in the FD
(0-5 GeV)

In the absence of oscillations,
212 events are expected.

(including 1.4 cosmic and 2.0
beam backgrounds.)

Spectrum is well matched to the
oscillation parameters Am?,,
and 6,;.

(All syst. uncertainties fit as
nuisance parameters.)

50

W e
o o

N
o

Events / 0.25 GeV

10

0

0

—4— Data
IEEEEEE Unoscillated prediction

- - - Best fit prediction (no systs)
. [_] Expected 1-o syst. range

. —— Best fit prediction (systs)
: —$— Backgrounds

Normal Hierarchy
i 2.74x10%° POT-equiv.
“--. Best fit x*/N,, =19.0/16

Reconstructed Neutrino Energy (GeV)

Clear observation of v, disappearance!
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v, CC Results: (arXiv:1601.05037v2)

AllOWGd regl.ons are 3:5 __ Normal Hierarchy, 90% CL __
consistent with I — NOvA |
MINOS and T2K L T2K 2014 1
(ShOWI’l Cltl". ht) e - - == MINOS 2014 i
18 > 30| i

o 5 i

O — ]

NOvVA sensitivity | o} |

already compelling | £ 25
with only 7.6% of -
nominal exposure!

2'0_|....|....|....|....|_
0.3 0.4 0.5 0.6 0.7
sin®6,,
Normal Hierarchy Inverted Hierarchy
Am32, = (2.521320) x 1073eV? Am?2, = (—2.5240.19) x 10 3eV?
sin” (653) = [0.38,0.65] sin? (f23) = [0.37,0.64]
(68% CL) (68% CL)

Degenerate best fit points at 0.43 and 0.60 Degenerate best fit points at 0.44 and 0.59
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v, Appearance Results:
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Cosmic Rejection:

Cut events with large
reconstructed p/p

Rejects downward-directed
cosmic shower

The v, selectors themselves
provide a lot of cosmic rejection

Events / 2.74 x 10%° POT equiv.

NOvA Preliminary

Good spill

Data quality

Containment

CosRej

Preselection

- Osc. v,

B cosmic Background
sl vl ot el el el
10° 10° 10° 10° 10° 107

PID

10
Events / 2.74x10%° POT equiv.

107" 1

NOvVA Preliminary

1 I 1 1 I I 1 T 1 | 1 | i T 1 I |

1 o After loose LID cut . _
 —— Osc. v, : ]

| —— Beam background - -

T —— Cosmic background 7]

N «— -
0.8 —L 7
0.6 ~
0.4 : -
0.2 =
R i | ]

o
ofl

2 04 'oéa' 0.8
Reconstructe pT/p

Achieve 1 part in ~108 rejection
of cosmic ray interactions.

Expected cosmic background:
0.06 events

(measured with beam-off data)
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v, CC Event Selection:

We have developed two independent v, CC selection algorithms
— Very different designs

Color: p.d.f. for dE/dx in each plane (e assumption)O

LT JI .
""_ P08
=]

0.06

o
o
I}
3

LID: [ikelihood Identification

dE/dx likelihoods calculated for longitudinal
and transverse slices of leading shower
under multiple particle hypotheses

o
o
IS

o
o
=
w

Likelihoods feed an artificial neutral network
along with kinematic and topological info:
e.g., energy near vertex, shower angle,
vertex-to-shower gap

Plane dE/dX (GeV/cm)

0.005 0.02

20 40
o g ) N plane from start point
Likelihoods calculated for each red and yellow region
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v, CC Event Selection:

LEM: Library Event Matching

Spatial pattern of energy deposition
is compared directly to that of ~108
simulated events (“library”)

=
Key properties of the best-matched
library events (e.g., fraction that
are signal events) are input into a
decision tree to form discriminant

3

1

[=]

-20

20

Left panels: candidate event, both views
Right panels: best-matched library event, both views

Middle panels: an intermediate step in calculating the match quality
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v, CC Event Selection:

LEM: Library Event Matching

Spatial pattern of energy deposition

is compared directly to that of ~108
simulated events (“library™)

Key properties of the best-matched
library events (e.g., fraction that
are signal events) are input into a
decision tree to form discriminant

LID and LEM sensitivities

Identical performance as measured
with signal efficiency, sig/bg ratio,
systematic uncertainties, and overall
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Left panels: candidate event, both views
Right panels: best-matched library event, both views

Middle panels: an intermediate step in calculating the match quality
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sensitivity to v, appearance and oscillation parameters.

Thus, prior to unblinding, decided to show both results and to use the more

traditional LID technique as the primary result where required.
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v, CC FD Event Selection:

= ND data is translated to FD bckgnd Calibration background
expectation in each energy bin, using v Interaction
Far/Near ratios from simulation Scint. Saturation
. . Normalization
= KD signal expectation is pinned to
the ND-selected v, CC spectrum i
ND BG composition
= Most systematics are assessed via Other
variations in the Far/Near ratios e

Total Uncertainty

; 10.8% |
0% 5% 10% 15%

Some FD sample stats:

Signal efficiency relative After all selection

to containment cuts: 35% 0.7% of NC events
Expected overlap in remain, relative to
LID/LEM samples: 62% those after containment

— Differences in which events
each technique selects
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v, FD Predictions:
LID selector

Background [ plus few-percent variations depending on osc. pars. ] 2 74%1029
0.94 + 0.09 events [49% v, CC, 37%NC ] POT equiv.
0.08: ——
. :_ (810 km)
Slgnal [ NH, 5 — 37-[/2, 923 — 77:/4 ] 0.075 Am3,| = 2.4x107 eV?
0.06F s%nf(zeﬁ) =1
5.62 + (.72 events : H(20,) =009
0.05
° I? E Am
Signal [ [H, 6=mn/2, 0,;=m/4] =
0.03
2.24 + 0.29 events : I
0.02F o §=0 B
L e d=mn/2
001 o d=m
o™ 3=3m2
000y G o5 05505 004 005 0.06 0,07 008
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v, FD Predictions:
LEM selector

Background [ plus few-percent variations depending on osc. pars. | 2.74%1(320

1.00 + 0.11 events [46% v, CC, 40% NC ] POT equiv.
0'083 NOVA
Signal [NH, §=37/2, 6,,=m/4]
5.91 £ 0.65 events Zz: o) o
Signal [IH, §=1/2, 6,,=mwA4] | ™
2.34 £ 0.26 events x
Gl BB
Aside: Before unblinding, two sidebands checks — 0_000; 02137;/2102 STTVRERNTIN: STIT
(1) Near-PID (LID/LEM) sideband, and P(v,>V)
(2) High-energy sideband 8121?:11: er :}jigaiz

Results of both were well within expectations.
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Far Detector selected v, CC candidate
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Far Detector selected v, CC candidate
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Far Detector selected v, CC candidate
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v, FD Events:

LID: 6 v, candidates

3.30 significance for v, appearance

At right:
Calorimetric energy

LEM: 11 v, candidates

5.50 significance for v, appearance

(All 6 LID events present in LEM set)

Events / 0.25 GeV

o
o

I | I I
20 :
2.74x 10°° POT-equiv. I FD data

—[— —— Signal prediction

—— Background

I I | I I | L1 1 1 I I I

—

15 ' 2 i 25
Calorimetric energy (GeV)

Probability of this overlap (or one

less likely) is ~8%.
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Result using LID selector N AR AN
acl |l LID NH:
- S O Best fit
FD selection: 6 v, candidates | -68% C.L. |
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v, Results:

* Applying the global reactor constraint of: Sin?20,, = 0.086 * 0.005
* Marginalizing over O,

S0 NN T
—NHLID ---NH LEM

N —IHLID ---IHLEM

Compatibility between the 4o | —
observed number of events\ ]

and mass hierarchy / 6.,

Significance

IH for 0.1t < &, < 0.51 is
disfavored at the 90% c.l.

* Both selectors prefer the NH < Results are consistent with T2K
with m< &, < 2m.

51



NOVA First Results Summary:

* Unambiguous observation of v, disappearance (consistent with MINOS and T2K.)

* v, appearance observed at 3.30 above predicted backgrounds, and suggests the
NH and 1t < &, < 21t (consistent with T2K.)

* Near detector X-section studies are underway (some results shown at NuINT and
on the arXiv.) Look for more publications soon.

* NOVA second analysis with double the stats is expected by this summer!




