Summary of the First Neutrino Oscillation Results from the NOvA Experiment

Overview:

Neutrino Oscillations

• The NOvA Experiment

 First ν_µ Disappearance Results (arXiv:1601.05037v2)

 First v_e Appearance Results (arXiv:1601.05022v1)

A Good Time to be in Neutrino Physics!

2015 Nobel Prize in Physics

2016 Breakthrough Prize in Physics

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

- Neutrinos can be described in one of two different bases: flavor or mass.
- Neutrino mixing is described by 3 real rotation angles and a CP violating phase factor, δ .
- All three rotation angles have been measured, but we don't yet know what delta is.

- Neutrinos can be described in one of two different bases: flavor or mass.
- Neutrino mixing is described by 3 real rotation angles and a CP violating phase factor, δ .
- All three rotation angles have been measured, but we don't yet know what delta is.

- Neutrinos can be described in one of two different bases: flavor or mass.
- Neutrino mixing is described by 3 real rotation angles and a CP violating phase factor, δ.
- All three rotation angles have been measured, but we don't yet know what delta is.
- The mixing is very different in the quark and lepton sectors!

Open Questions:

Flavor oscillation in general:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| \sum_{j} U^*{}_{\alpha j} U_{\beta j} e^{-im_j^2 L/2E} \right|^2$$

 v_{μ} survival probability:

$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \sin^2(2\theta_{23})\sin^2\left(\frac{1.27\Delta m_{32}{}^2L}{E}\right)$$
$$\Delta m_{ij}{}^2 \equiv m_i{}^2 - m_j{}^2 \qquad \qquad \Delta_{23}$$

Flavor oscillation in general:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \left| \sum_{j} U^*{}_{\alpha j} U_{\beta j} e^{-im_j^2 L/2E} \right|^2$$

 v_{μ} survival probability:

$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - sin^{2}(2\theta_{23})sin^{2}\left(\frac{1.27\Delta m_{32}^{2}L}{E}\right)$$
$$\Delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2}$$
$$\Delta_{23}^{nts}$$

Flavor oscillation in general:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \left| \sum_{j} U^*_{\alpha j} U_{\beta j} e^{-im_j^2 L/2E} \right|^2$$

 v_{μ} survival probability:

$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \sin^{2}(2\theta_{23})\sin^{2}\left(\frac{1.27\Delta m_{32}^{2}L}{E}\right)$$
$$\Delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2}$$

 $v_{\rm e}$ appearance probability:

$$P\begin{pmatrix} (\nu_{\mu}^{(-)} \rightarrow \nu_{e}^{(-)}) \approx P_{atm} + P_{sol} + 2\sqrt{P_{atm}P_{sol}} [\cos(\Delta_{32})\cos(\delta) \mp \sin(\Delta_{32})\sin(\delta)]$$

$$P_{atm} \equiv \sin^{2}(\Theta_{23})\sin^{2}(2\Theta_{13}) \frac{\sin^{2}(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)^{2}} (\Delta_{31})^{2} \qquad "-" = neutrinos$$

$$"+" = anti - neutrinos$$

$$a \equiv G_{F}N_{e}/\sqrt{2}$$

$$P_{sol} \equiv \cos^{2}(\Theta_{23})\sin^{2}(2\Theta_{12}) \frac{\sin^{2}(\mp aL)}{(\mp aL)^{2}} (\Delta_{21})^{2} \qquad N_{e} = electron \ density \ in \ Earth$$

Flavor oscillation in general:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \left| \sum_{j} U^*{}_{\alpha j} U_{\beta j} e^{-im_j^2 L/2E} \right|^2$$

 v_{μ} survival probability:

$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \sin^2(2\theta_{23})\sin^2\left(\frac{1.27\Delta m_{32}^2 L}{E}\right)$$
$$\Delta m_{ij}^2 \equiv m_i^2 - m_j^2 \qquad \qquad \Delta m_{23}^2$$

 $v_{\rm e}$ appearance probability:

$$P\left(\stackrel{(-)}{\nu_{\mu}} \rightarrow \stackrel{(-)}{\nu_{e}}\right) \approx P_{atm} + P_{sol} + 2\sqrt{P_{atm}P_{sol}}\left[\cos(\Delta_{32})\cos(\delta) \mp \sin(\Delta_{32})\sin(\delta)\right]$$

$$P_{atm} \equiv \sin^{2}(\Theta_{23})\sin^{2}(2\Theta_{13})\frac{\sin^{2}(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)^{2}}(\Delta_{31})^{2} \qquad "-" = neutrinos$$

$$"+" = anti - neutrinos$$

$$a \equiv G_{F}N_{e}/\sqrt{2}$$

$$P_{sol} \equiv \cos^{2}(\Theta_{23})\sin^{2}(2\Theta_{12})\frac{\sin^{2}(\mp aL)}{(\mp aL)^{2}}(\Delta_{21})^{2} \qquad N_{e} = electron \ density \ in \ Earth$$

matter effect: caused by v_e scattering off e^- as they travel through the Earth...

Flavor oscillation in general:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \left| \sum_{j} U^*{}_{\alpha j} U_{\beta j} e^{-im_j^2 L/2E} \right|^2$$

 v_{μ} survival probability:

$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \sin^{2}(2\theta_{23})\sin^{2}\left(\frac{1.27\Delta m_{32}^{2}L}{E}\right)$$
$$\Delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2}$$

 $v_{\rm e}$ appearance probability:

$$P\begin{pmatrix} \begin{pmatrix} - \\ \nu_{\mu} \end{pmatrix} \rightarrow \nu_{e} \end{pmatrix} \approx P_{atm} + P_{sol} + 2\sqrt{P_{atm}P_{sol}} [\cos(\Delta_{32}(\cos(\delta) \mp \sin(\Delta_{32}(\sin(\delta))) + \sin(\Delta_{32}(\sin(\delta)))]$$

$$P_{atm} \equiv \sin^{2}(\Theta_{23}) \sin^{2}(2\Theta_{13}) \frac{\sin^{2}(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)^{2}} (\Delta_{31})^{2} \qquad "-" = neutrinos$$

$$"+" = anti - neutrinos$$

$$a \equiv G_{F}N_{e}/\sqrt{2}$$

$$P_{sol} \equiv \cos^{2}(\Theta_{23}) \sin^{2}(2\Theta_{12}) \frac{\sin^{2}(\mp aL)}{(\mp aL)^{2}} (\Delta_{21})^{2} \qquad N_{e} = electron \ density \ in \ Earth$$

octant

hierarchy

Is $θ_{23} > 45°$ or $θ_{23} < 45°$? Is $m_3 > m_1$ or is $m_3 < m_1$?

CP violation

ls δ ≠ 0?

 $v_{\rm e}$ appearance probability:

$$P(\bigvee_{\mu}^{(-1)} \to \bigvee_{e}^{(-1)}) \approx P_{atm} + P_{sol} + 2\sqrt{P_{atm}P_{sol}}[\cos(\Delta_{32})\cos(\delta) \mp \sin(\Delta_{32})\sin(\delta)]$$

$$P_{atm} \equiv \sin^{2}(\Theta_{23})\sin^{2}(2\Theta_{13}) \frac{\sin^{2}(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)^{2}} (\Delta_{31})^{2} \qquad "-" = neutrinos$$

$$P_{sol} \equiv \cos^{2}(\Theta_{23})\sin^{2}(2\Theta_{12}) \frac{\sin^{2}(\mp aL)}{(\mp aL)^{2}} (\Delta_{21})^{2} \qquad a \equiv G_{F}N_{e}/\sqrt{2}$$

$$P_{sol} \equiv \cos^{2}(\Theta_{23})\sin^{2}(2\Theta_{12}) \frac{\sin^{2}(\mp aL)}{(\mp aL)^{2}} (\Delta_{21})^{2} \qquad N_{e} = electron \ density \ in \ Earth$$
For fixed $L/E = 0.4 \ km/MeV$

$$\int_{0.06}^{0.07} \frac{|\Delta m_{32}^{2}| = 2.4 \times 10^{3} \ eV^{2}}{\sin^{3}(2\Theta_{13}) = 1} \frac{|\Delta m_{32}^{2}| = 2.4 \times 10^{3} \ eV^{2}}{\sin^{3}(2\Theta_{13}) = 1} \frac{|\Delta m_{32}^{2}| = 2.4 \times 10^{3} \ eV^{2}}{\sin^{3}(2\Theta_{13}) = 0.09}$$

$$\int_{0.06}^{0.05} \frac{|\Delta m_{32}^{2}| = 0.09}{\Delta m_{32}^{2} = 0} \frac{|\Delta m_{32}^{2}| = 0.09}{\Delta m_{32}^{2} = 0.09}$$

 $P(v_{\mu} \rightarrow v_{e})$

 $v_{\rm e}$ appearance probability:

$$P(\stackrel{(-)}{\nu_{\mu}} \rightarrow \stackrel{(-)}{\nu_{e}}) \approx P_{atm} + P_{sol} + 2\sqrt{P_{atm}P_{sol}} [\cos(\Delta_{32})\cos(\delta) \mp \sin(\Delta_{32})\sin(\delta)]$$

$$P_{atm} \equiv \sin^{2}(\Theta_{23})\sin^{2}(2\Theta_{13}) \frac{\sin^{2}(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)^{2}} (\Delta_{31})^{2} \qquad "-" = neutrinos$$

$$"+" = anti - neutrinos$$

$$P_{sol} \equiv \cos^{2}(\Theta_{23})\sin^{2}(2\Theta_{12}) \frac{\sin^{2}(\mp aL)}{(\mp aL)^{2}} (\Delta_{21})^{2} \qquad a \equiv G_{F}N_{e}/\sqrt{2}$$

$$N_{e} = electron \ density \ in \ Earth$$
For fixed $L/E = 0.4 \ \text{km/MeV}$

$$N_{e} = electron \ density \ in \ Earth$$
For fixed $L/E = 0.4 \ \text{km/MeV}$

$$N_{e} = electron \ density \ in \ Earth$$

$$N_{e} = appearance \ and \ \overline{\nu_{e}} \ appearance$$
will help us answer these open questions!
$$A \ simultaneous \ measurement \ of \ \nu_{e} \ appearance \ and \ \overline{\nu_{e}} \ appearance$$
will help us answer these open questions!

The NOvA Experiment:

The NOvA Experiment: NuMI Beam

NuMI - <u>Neu</u>trinos at the <u>Main Injector</u>

- provides a 10 µsec pulse every 1.33 sec
- currently operating at > 500 kW
- averaging 85% uptime
- expected to reach 700 kW this year

The NOvA Experiment: NuMI Beam

The NOvA Experiment: Detectors

Above: NOvA has 2 detectors, near and far. Each is composed of alternating, orthogonal planes of extruded PVC.

Far → 14 kton, 810 km from Fermilab, on the surface Near → 300 ton, 1 km from the beam source, 105 m underground **Right:** The NOvA cell is composed of extruded PVC filled with a liquid scintillator. A looped fiber collects scintillation light and transmits it to an avalanche photo-diode (APD.)

Cells are 4 cm x 6 cm and in the far detector are 15.5 m long, in the near detector, they are 4 m long.

To 1 APD pixel

Far Left: The NOvA APD showing the pixels used to read out 32 cells.

Near Left: The interface to the APD showing both ends of each of the fibers from 32 cells.

The NOvA Experiment: Detectors

A simulated numu CC event showing a long muon track.

 v_{μ} + N \longrightarrow μ + p

A simulated nue CC event showing an electron shower.

 $v_e + N \longrightarrow e + p$

A simulated NC event with a π^0 showing an EM shower displaced from the vertex.

 $v_{\chi} + N \longrightarrow \pi^{0} + p$

- NOvA is a totally active tracking calorimeter.
- The detectors are designed with low-Z materials (mineral oil and PVC) so as to enhance the differences between muon tracks, showers caused by electrons, and showers caused by pi-zeros.
 - Moliere radius = 11 cm
 - EM radiation length = 40 cm

Near Detector Event Display

(colors show hit times)

Far Detector Event Display

Far Detector Event Display

Calibration:

- Compute the attenuation curve for each fiber individually using through-going cosmic muons.
- Compute the absolute energy scale for the whole detector using stopping cosmic muons.

Reconstruction:

Vertexing: Identify a global event vertex using a Hough transform as guidance. **CC events: 11 cm vertex resolution**

Clustering: Find clusters in angular space around the vertex. Match clusters between views using dE/dx.

Tracking: Trace particle trajectories with a Kalman filter tracker that uses a model for multiple scattering. Also have other, faster and lighter-weight trackers for calibration and monitoring tools.

NOvA Data Collection:

Data Summary:

- Feb 6th 2014 May 15th 2015
- Began collecting the FD data while still under construction.
- Added each "diblock" (a unit of 64 detector planes) as soon as it was fully commissioned and physics-ready.
- The non-static detector size is also modeled in the simulations.

Partial Far Detector during construction (6 diblock example)

Full Far Detector (14 diblocks)

v_{μ} Disappearance Results:

v_{μ} CC Event Selection:

First apply basic containment cuts...

<u>Muon ID</u>

- Use a 4-variable kNN algorithm to identify muons:
 - track length
 - dE/dx along track (shown top right)
 - scattering along track
 - proportion of lateral energy distribution consistent with muon MIP

Keep events with muon ID > 0.75.

Far Detector Cosmic Rejection:

- We expect ~65,000 cosmic rays in-time with the NuMI beam spills per day. The expected number of contained v_{μ} CC events per day is only a few.
- Containment cuts will remove 99% of the cosmics.

- We use a boosteddecision-tree (BDT) algorithm that takes input from reconstruction variables to reject the remaining cosmics.
- All cuts together give us > 15:1 s:b.
- Cosmics are reduced by 10⁷!

Energy Estimation:

Reconstructed muon track: length $\rightarrow E$

length $\Rightarrow E_{\mu}$

Hadronic system:

 $\sum_{\text{cells}} E_{\text{visible}} \Rightarrow E_{\text{had}}$

Reconstructed ν_{μ} energy is the sum of these two: $E_{\nu} = E_{\mu} + E_{had}$

Energy resolution at beam peak ~7%

Far Detector Prediction:

- (1) Estimate the underlying true energy distribution of selected ND events
- (2) Multiply by expected Far/Near event ratio and $\nu_{\mu} \rightarrow \nu_{\mu}$ oscillation probability as a function of true energy
- (3) Convert FD true energy distribution into predicted FD reco energy distribution

Systematic uncertainties assessed by varying all MC-based steps

Systematics:

Most of our systematic uncertainties have **relatively little influence** on the result

Hadronic energy syst. is one with a noticeable effect — (impact reduced by ND-to-FD prediction procedure)

Uncertainties assessed

- Hadronic Energy (14% shift, equiv. to 6% shift in v_F)
- Neutrino Flux (beam modeling, hadron transport)
- Absolute and Relative Normalizations
- Neutrino Interactions (GENIE, Intranuke modeling)

- NC and ν_τ background rates (100% each)
- Calibration, light-levels

 (hit energy, attenuation, thresholds)
- Oscillation parameter uncertainties (current world knowledge)

Far Detector selected ν_{μ} CC candidate

Far Detector selected ν_{μ} CC candidate

Far Detector selected $\nu_{\mu}\, {\rm CC}$ candidate

33 events selected in the FD (0-5 GeV)

In the absence of oscillations, 212 events are expected.

(including 1.4 cosmic and 2.0 beam backgrounds.)

Spectrum is well matched to the oscillation parameters Δm_{32}^2 and θ_{23} .

(All syst. uncertainties fit as nuisance parameters.)

Clear observation of v_{\mu} disappearance!

v_u CC Results:

(arXiv:1601.05037v2)

Degenerate best fit points at 0.43 and 0.60

v_e Appearance Results:

NOvA Preliminary

Cosmic Rejection:

Cut events with large reconstructed p_T/p

Rejects downward-directed cosmic shower

The v_e selectors themselves provide a lot of cosmic rejection

Achieve 1 part in ~10⁸ rejection of cosmic ray interactions.

Expected cosmic background: **0.06 events**

(measured with beam-off data)

v_e CC Event Selection:

We have developed two independent v_e CC selection algorithms

→ Very different designs

LID: Likelihood Identification

dE/dx **likelihoods** calculated for **longitudinal and transverse** slices of leading shower under multiple particle hypotheses

Likelihoods feed an artificial neutral network along with **kinematic and topological info**:

e.g., energy near vertex, shower angle, vertex-to-shower gap

Likelihoods calculated for each red and yellow region

$v_{\rm e}$ CC Event Selection:

LEM: Library Event Matching

Spatial pattern of energy deposition is compared directly to that of $\sim 10^8$ simulated events ("library")

Key properties of the **best-matched library events** (*e.g.*, fraction that are signal events) are input into a decision tree to form discriminant

Left panels: candidate event, both views *Right panels*: best-matched library event, both views *Middle panels*: an intermediate step in calculating the match quality

v_e **CC Event Selection:**

LEM: Library Event Matching

Spatial pattern of energy deposition is compared directly to that of $\sim 10^8$ simulated events ("library")

Key properties of the **best-matched library events** (*e.g.*, fraction that are signal events) are input into a decision tree to form discriminant

Left panels: candidate event, both views *Right panels*: best-matched library event, both views *Middle panels*: an intermediate step in calculating the match quality

LID and LEM sensitivities

Identical performance as measuredPlanewith signal efficiency, sig/bg ratio,systematic uncertainties, and overallsensitivity to v_e appearance and oscillation parameters.

Thus, prior to unblinding, decided to **show both results** and to use the more traditional **LID technique** as the primary result where required.

v_e CC FD Event Selection:

- ND data is translated to FD bckgnd expectation in each energy bin, using Far/Near ratios from simulation
- **FD** *signal* **expectation** is pinned to the ND-selected v_{μ} CC spectrum
- Most systematics are assessed via variations in the Far/Near ratios

Some FD sample stats:

Signal efficiency relative to containment cuts: 35%

Expected overlap in LID/LEM samples: 62% → Differences in which events each technique selects After all selection, **0.7% of NC events** remain, relative to those after containment

v_e FD Predictions: <u>LID selector</u>

Background [plus few-percent variations depending on osc. pars.]

 0.94 ± 0.09 events [49% ν_e CC, 37% NC]

2.74×10²⁰ POT equiv.

Signal [NH,
$$\delta = 3\pi/2$$
, $\theta_{23} = \pi/4$]
5.62 ± 0.72 events
Signal [IH, $\delta = \pi/2$, $\theta_{23} = \pi/4$]
2.24 ± 0.29 events

v_e FD Predictions: LEM selector

Background [plus few-percent variations depending on osc. pars.]

 1.00 ± 0.11 events [46% ν_e CC, 40% NC]

Signal [NH,
$$\delta = 3\pi/2$$
, $\theta_{23} = \pi/4$]
5.91 ± 0.65 events
Signal [IH, $\delta = \pi/2$, $\theta_{23} = \pi/4$]

 2.34 ± 0.26 events

Aside: Before unblinding, two sidebands checks –
(1) Near-PID (LID/LEM) sideband, and
(2) High-energy sideband

Results of both were **well within expectations**.

 2.74×10^{20}

POT equiv.

Far Detector selected ν_e CC candidate

Far Detector selected ν_e CC candidate

Far Detector selected v_e CC candidate

v_e FD Events:

(All 6 LID events present in LEM set)

Probability of this overlap (or one less likely) is ~8%.

Result using LID selector

FD selection: $6 \nu_e$ candidates

For $(\delta_{CP}, \sin^2 2\theta_{13})$ allowed regions

- Feldman-Cousins procedure applied
- solar osc. parameters varied
- Δm_{32}^2 varied by *new NOvA measurement*
- $\sin^2\theta_{23} = 0.5$

v_e **Results:**

• Applying the global reactor constraint of:

 $Sin^2 2\Theta_{13} = 0.086 \pm 0.005$

• Marginalizing over O_{23}

Compatibility between the $\,$ observed number of events and mass hierarchy / $\delta_{\text{CP.}}$

• Both selectors prefer the NH • Results are consistent with T2K with $\pi < \delta_{CP} < 2\pi$.

NOvA First Results Summary:

- Unambiguous observation of v_{μ} disappearance (consistent with MINOS and T2K.)
- v_e appearance observed at 3.3 σ above predicted backgrounds, and suggests the NH and $\pi < \delta_{CP} < 2\pi$ (consistent with T2K.)
- Near detector X-section studies are underway (some results shown at NuINT and on the arXiv.) Look for more publications soon.
- NOvA second analysis with double the stats is expected by this summer!

