Modern cosmology 4: The cosmic microwave background

- Expectations
- Experiments: from COBE to Planck
 - ► COBE
 - ▶ ground-based experiments
 - ► WMAP
 - ► Planck
- Analysis
- Results

PHY306

Expectations

- Reasonable characteristic size would be Hubble length $c/H \approx 0.2$ Mpc at $z \approx 1100$
- Angular diameter distance of surface of last scattering = $d_P/1100 \approx 3ct_0/1100 \approx 12$ Mpc
- So characteristic angular size $\approx 17 \text{ mrad} = 1^{\circ}$ (more precisely $l = 220/\sqrt{\Omega}$)
 - depends on geometry
 - in closed universe given linear size corresponds to larger angle
 - ▶ vice versa for open universe

1

All pictures from Wayne Hu,

 $http://background.uchicago.edu/~whu/intermediate/intermediate.html \ensuremath{\textit{PHY}306}$

Expectations

• Gravity and pressure create oscil- Low Baryons lations in photon-baryon fluid

- ▶ these give higher "harmonics" in power spectrum
- baryons add to density but not pressure \rightarrow enhance compression peaks (odd numbers) over rarefaction

PHY306

red is hot - blue is cold!

• Basic aim

▶ obtain measurements of $\delta T/T$

- ▶ over as much of the sky as possible
- ▶ with as high an angular resolution as possible

• Problems

- Foreground emission from Galaxy and solar system
 - ► can be distinguished by different spectrum

▶ instrumental noise

must minimise

PHY306

• COBE

- ► low Earth orbit
- ▶ poor angular resolution so only sensitive to *l* < 20</p>

PHY306

Experiments

- Next generation after COBE: ground and balloon-based experiments
 - ▶ much better angular resolution
 - Iimited sky coverage
 - ► limited exposure time
- Next generation space-based experiments
 - ► WMAP and Planck
 - ► whole-sky coverage with good angular resolution
- New ground-based experiments
- ► polarisation and high angular resolution PHY306

PHY306

PHY306

Experiments

DASI

Degree Angular Scale Interferometer

<figure><figure>

PHY306

PHY306

Experiments

Planck launched 14 May 2009 CMB results came out April 2013

13

PHY306

South Pole Telescope

10 m telescope for mm and sub-mm wavelengths

Measured B-mode polarisation at high ℓ due to gravitational lensing, July 2013

PHY306

Experiments BICEP2: B signal \0_3µk -50 [deg.] -55 Dedination -60 50 0 -50 Right ascension [deg.] BKxBK (BKxBK 0.05 0.0 **BICEP2** BBI(1+1)C/2π[µK²] 0.03 26 cm refractor in cryostat for very low-noise 0.02 polarisation measurements 0.01 Measured B-mode polarisation at low ℓ , March 2014 Unfortunately this seems to have been largely due to -0.01 dust, not primordial gravitational waves as initially 100 150 Multipole 200 250 300 50

thought PHY306

Health Warning...

• CMB data are not the answer to Life, the Universe, and Everything

PHY306