

Partial Return Yoke

Holger Witte Brookhaven National Laboratory Advanced Accelerator Group

1

Outline

- Introduction and Concept
- Performance

• Engineering

• Extension to Step VI

BROOKHAVEN NATIONAL LABORATORY

Concept

- Partial Return Yoke (a.k.a. "shield", "yoke")
- Concept presented at MICE CM 2012
- Initial Geometry
 - Tube of radius 1.2 m
 - wall thickness 10 cm
 - azimuthally -50..50°
 - weight: 30t

H Witte. Step IV & VI: Local Flux Return. MICE CM 34, October 2012.

(Note: not to scale)

Geometric Variations

Initial Design

Vertical Extensions + New Virostek Plates Present Design Engineering driven

Simulation Details

- How certain are we of the results?
 - Simple concept
 - Key simulations done with two FEA codes
- Opera from VectorFields/Cobham
 - Solves for scalar potential

$$\nabla \mu \nabla \phi - \nabla \mu (\int_{\Omega_J} \frac{J \times R}{|R^3|} d\Omega_J) = 0$$

- Comsol Multiphysics
 - Solves for vector potential $\nabla \times (\mu^{-1} \nabla \times A) = J$

H Witte. Software Model Verification, 14 November 2012, Magnetic shielding meeting.

Partial Return Yoke

Performance

Iso-Surface 0.5 mT

Frontal View – 240 MeV Solenoid BROOKHAVEN NATIONAL LABORATORY

240 MeV Solenoid/Flip mode BROOKHAVEN NATIONAL LABORATORY

Engineering

Engineering

- BNL Engineering
 - Steve Plate
 - Mike Anerella
 - (lots of help from others: Jason Tarrant, Craig MacWaters, Tim Hayler, Geoff Barber)
- Preliminary Design Phase
 - (almost finished)
 - General concept (forces, tolerances, joining of pieces, ...)
 - Costing
 - Time line
 - Assembly procedure
- Detailed Design Phase
 - Complete design
 - Fabrication drawings
 - Interferences

Interferences

SECTION A-A

Courtesy of Jason Tarrant, STFC

Engineering - Mezzanine

Courtesy of Jason Tarrant, STFC

Step VI

Step VI

COMSOL Model

Based on Steve Plate's shield design

5 Gauss Surface

Step VI, 240 MeV Solenoid

Step VI, 240 MeV Solenoid

Conclusion

- Demonstrated shielding concept
 - Reduces stray field to 5—10 Gauss (10/12 cm)
 (No shield: 300—600 Gauss = factor 50+)
 - Also for Step VI
- Feasibility
 - Penetrations tracker waveguides, vacuum, ...
 - Connections for vertical gaps
- Effect on beam: no issue
- Engineering
 - ongoing