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Lectures 15-20  
 

Outline: 
 

1. Introduction to Partial differential equations. 
2. The Wave equation. 
3. The Shrödinger equation. 
4. The 2D Laplace equation. 
5. The Diffusion equation. 
6. The 3D coordinate systems. 
7. The Spherical harmonics. 

 
Note: The rest of this course is not covered by Jordan & Smith. These notes are complete although you 
may find the Course Pack helpful. 
 

Introduction to PDEs 
In many physical situations we encounter quantities which depend on two or more variables, for example 
the displacement of a string varies with space and time: y(x, t). Handing such functions mathematically 
involves partial differentiation and partial differential equations (PDEs).  
 
Revision of Partial Differentiation 

Consider a function y(x, t). Remember that to find 

! 

"y
"x

 (the partial derivative of y with respect to x), we 

differentiate with respect to x treating t as a constant. 

Example   Let   

! 

y = x 2 sin t .     So    
  

! 

"y
"x

= 2x sin t ,  
  

! 

"y
"t

= x 2 cos t , 
  

! 

"2y
"x 2

= 2sin t  and 
  

! 

"2y
"t 2

= #x 2 sin t . 

Partial Differential Equations 
Some of the most commonly occuring PDEs, and their areas of application, are listed below: 
 

1 

! 

"2u =
1
c 2
#2u
#t 2

 Wave equation Elastic waves, sound waves, 
electromagnetic waves, etc. 

2 
  

! 

"
!2

2m
#2u +Vu = i! $u

$t
 Schrödinger’s equation Quantum mechanics 

3 

! 

"2u =
1
h2

#u
#t

 Diffusion equation Heat flow, chemical diffusion, etc. 

4 

! 

"2u = 0 Laplace’s equation Electromagnetism, gravitation, 
hydrodynamics, heat flow. 

5 

! 

"2u = #
$
%0

 Poisson’s equation As (4) in regions containing mass, 
charge, sources of heat, etc. 

 

Remember from last year that Gauss equation relates the surface integral of the electric field to the charge 

inside the surface. This can also be written as 

! 

" # E =
$
%0

 and since the electric field is related to the 

potential by 

! 

E = "#V  then we can write 

! 

"2V = #
$
%0

. This is Poisson’s equation, and in a charge free 

region of space this becomes Laplace’s equation. This can be directly applied to fluid flow or gravitation 
by reassigning terms. The Schrödinger and diffusion equations will be covered in future lectures. 
 
We will start by looking at equations 1-3 in one space dimension, then move on to 3D problems. 
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In many cases, solutions of PDEs can be found by separation of the variables. We will learn this method 
by considering waves on strings. In subsequent lectures we will use a similar procedure to solve many 
other PDEs. 
The One-Dimensional Wave Equation 
See Course Pack p.69-74, 95-101. 

Waves on strings are governed by the equation     
      

! 

"2y(x,t)
"x 2

=
1
c2
"2y(x,t)
"t 2

,  where  y(x, t) is the 

displacement of the string at position x and time t.   
 

You have met this equation briefly in Y1 and learned that  c2 = T / µ ,  where µ is the mass per unit length 
of the string, T is the tension, and c is the wave velocity. In this course we will not be concerned with 
where the equation came from but only with finding its solutions, i.e. determining the motion of the 
string. 
Consider the specific case of a string of length L attached at both ends to rigid supports. Then we 
additionally have the boundary conditions   y(0, t) =  y(L, t) = 0. 
 

Note: A PDE can never be solved without knowing the boundary conditions! 

Step 1: Separation of the Variables 
Our boundary conditions are true at special values of x and for all values of time. 
Looking at the boundary conditions we can notice that the conditions should be satisfied for specific 
values of x but for all times t. This means that the solution can be factorised:   

! 

y(x , t) = X(x)T(t) , where 
functions denoted by capital letters X and T are functions of x and t respectively. 

Substituting this into the wave equation: 

We have  
    

! 

"2 y
"x2 =

"2

"x2 X (x)T (t)[ ] = T (t) d 2 X (x)
dx2        and similarly   

  

! 

1
c 2
"2y
"t 2

=
1
c 2
X(x) d

2T(t)
dt 2

.  

So substitution gives       
  

! 

T(t) d
2X(x)
dx 2

=
X(x)
c 2

d2T(t)
dt 2

. 

Rearrange the equation so all the terms in x are on one side and all the terms in t are on the other: 

                                      
  

! 

1
X(x)

d2X(x)
dx 2

=
1

c 2T(t)
d2T(t)
dt 2

 

The only way this can be satisfied for all x and t is if both sides are equal to a constant: 

     
  

! 

1
X(x)

d2X(x)
dx 2

=
1

c 2T(t)
d2T(t)
dt 2

= constant .                 Suppose we call the constant N.  

Then we have   
  

! 

1
X(x)

d2X(x)
dx 2

= N       which rearranges to     
  

! 

d2X(x)
dx 2

= N X(x).                 (1) 

And    
  

! 

1
c 2T(t)

d2T(t)
dt 2

= N    which rearranges to     
  

! 

d2T(t)
dt 2

= Nc 2T(t).                 (2)     

Now we have ordinary differential equations for X(x) and T(t) – which we can solve.  
 
Consider the equation for X(x). Previously we have looked at two similar equations (assuming that N ≠ 0): 

(i) 
    

! 

d 2

dt 2
X (t) +"0

2X (t) = 0   Linear harmonic oscillator 

(ii) 
    

! 

d 2

dt 2
X (t) "# 2X (t) = 0  Unstable equilibrium 

Which case we have depends on whether our constant N is positive or negative. We need to make an 
appropriate choice for N by considering the physical situation, particularly the boundary conditions.  
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Step 2: Satisfying the Boundary Conditions 
In our case the boundary conditions are y(0, t) =  y(L, t) = 0. This means  X(0) = X(L) = 0, i.e. X is equal to 
zero at two different points. This is crucial in determining the sign of N. Remember that (i) has oscillatory 
solutions (meaning that it will pass through zero displacement many times), whilst the solutions of (ii) are 
exponential growth and decay that only tend to x = 0 once (see previous lectures and compare a pendulum 
with a pencil falling from the vertical). In other words: 

N ≠ 0, otherwise the solution for X(x) is X(x) = ax + b; the boundary conditions would require then that a 
= 0 and b = 0 and hence, X ≡ 0 – not interesting. 

If N is positive, let’s say N = k2, then     

! 

X (x) = Aekx + Be"kx  and again to satisfy the boundary conditions, A 
= B = 0, and hence X ≡ 0. 

So N should be negative. Let’s take N = -k2.  

So (1) becomes 
  

! 

d2X(x)
dx 2

= "k 2 X(x) . This has a general solution   

! 

X(x) = Acoskx + Bsin kx . 

Now we apply the boundary conditions:   
    X(0) = 0   gives  A = 0.    

    We must take B ≠ 0.  So X(L) = 0  requires sin kL = 0,  i.e.  kL = nπ.   
    So k can only take certain values  kn = nπ / L  where n is an integer (which we can chose to be positive) 

    So we have  
  

! 

Xn (x) = Bn sin n"x
L

  for  n = 1, 2, 3, …. 
 

The equations for X(x) and T(t) are equal to the same constant, so equation (2) becomes  

                         
  

! 

d2T(t)
dt 2

= Nc 2T(t) = "k 2 c 2T(t). 

Looking at the diagram below 

! 

"n =
2L
n

 and since 

! 

kn =
2"
#n

  then 

! 

kn =
n"
L

. 

Since c is the wave velocity and 

! 

c = f" , we can write  
  

! 

c =
"#
2$

=
"
k

   and  so  
  

! 

"n = knc =
n#c
L

. 

So we can say that  
    

! 

d 2T (t)
dt 2

= "#n
2T (t) . This again has the form of the LHO equation. 

Therefore it has solutions of the form      

! 

Tn(t) = (Cei"n t + De# i"n t ) or     

! 

Tn(t) = (Csin"nt + Dcos"nt) or 

    

! 

Tn(t) = Ccos "nt + #n( ). 
 

   Hence we have solutions:     

 
    

! 

yn(x ,t) = X n(x)Tn(t) = Bn sin knx cos "nt + #n( ) = Bn sin n$x
L

cos n$ct
L

+ #n

% 

& 
' 

( 

) 
* . 

 
We see that each yn represents harmonic motion with a different wavelength (different frequency). In the 
diagram below of course time is constant (as it’s a photo not a movie!!): 
 

 

n = 1      Fundamental      

! 

k1 =
"
L

,      

! 

"1 =
2#
k1

= 2L ,      

! 

"1 =
#c
L

    

n = 2          2nd harmonic     

! 

k2 = 2k1 =
2"
L

,    

! 

"2 =
"1
2

= L ,        

! 

"2 =
2#c
L

= 2"1  

n= 3     3rd harmonic    

! 

k3 = 3k1 =
3"
L

,    

! 

"3 =
"1
3

=
2
3
L ,      ω3 =  3ω1,    etc. 
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The Superposition Principle 
The wave equation (and all PDEs which we will consider) is a linear equation, meaning that the 
dependent variable and all its derivatives appear to the 1st power. For such equations there is a 
fundamental theorem called the superposition principle, which states that if  y1 and  y2 are solutions of 
the equation then  y = c1 y1 + c2 y2  is also a solution,  for any constants c1, c2. Put more simply this means 
that the net amplitude caused by two or more waves traversing the same space, is the sum of the 
amplitudes which would have been produced by the individual waves separately. Although this principle 
has been mainly used to describe constructive and destructive interference of waves, it was also used last 
year to describe net voltage within a circuit, energy transfer along a bar heated at both ends, and in the 
summation of the effects of charge distribution. 

Step 3: Constructing the General Solution 
Bearing in mind the superposition principle, the general solution of our equation is the sum of all  

solutions:  
      

! 

y(x,t) = Bn sin n"x
L

cos n"ct
L

+ #n

$ 

% 
& 

' 

( 
) 

n=1

*

+ .    

This is the most general answer to the problem. For example, if a skipping rope was oscillated at both its 
fundamental frequency and its 3rd harmonic, then the rope would look like the dashed line at some 
specific point in time and generally its displacement could be described by the equation :- 
 

      
      

! 

y(x,t) = B1sin "x
L

cos "ct
L

+ #1
$ 

% 
& 

' 

( 
) + B3 sin 3"x

L
cos 3"ct

L
+ #3

$ 

% 
& 

' 

( 
)  

 
NB. The Fourier series is a further example of the superposition principle. 
Step 4: Solution of Complete Problem using Fourier Series 

Suppose we have been given further information, namely we have been told that at time t = 0 the string is 
released from rest in the configuration shown below: 
 

At t = 0 the string is at rest,  i.e. 

! 

"y
"t t= 0

= 0 , if we differentiate we find 

  

! 

"y
"t

= #
Bnn$c
L

sin n$x
L

sin n$ct
L

+ %n
& 

' 
( 

) 

* 
+ 

n=1

,

- = 0  so for this to be true φn = 0 for all n. 

So the general solution becomes   
    

! 

y(x ,t) = Bn sin n"x
L

cos n"ct
Ln=1

#

$ . 

So at time t = 0,   
    

! 

y(x ,0) = Bn sin n"x
Ln=1

#

$ . 

If we look back to the lectures on Fourier series. we will see that the coefficients Bn are the coefficients of 
the Fourier series for the given initial configuration! We’ve already shown that the configuration drawn 
above at  t = 0 can be expressed as a half-range sine series,  
 

    

! 

Bn =
2
L

f (x)sin n"x
L0

L

# dx , where f(x) is the function that determines the string deviation at the initial time 

(see figure). In our case the solution at t = 0 becomes (see previous lectures on Fourier series): 
       

  
        

! 

y(x,0) =
8d
" 2 sin "x

L
#
1
9

sin 3"x
L

+
1
25

sin 5"x
L

#
1
49

sin 7"x
L

+…
$ 

% 
& 

' 

( 
)    for  

! 

0 " x " L . 

 
Hence, by trusting the superposition principle and therefore treating each harmonic as a separate 
oscillating sinusoidal waveform, we deduce that at later times the configuration of the string will be:- 
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! 

y(x ,t) =
8d
" 2 sin "x

L
cos"ct

L
#
1
9

sin 3"x
L

cos 3"ct
L

+
1
25

sin 5"x
L

cos 5"ct
L

#
1
49

sin 7"x
L

cos 7"ct
L

+…
$ 

% 
& 

' 

( 
) . 

 
SUMMARY of the procedure used: 

1. We have an equation 
    

! 

"2y(x ,t)
"x 2

=
1
c2
"2y(x ,t)
"t 2

 with boundary conditions  y(0, t) = y(L, t) = 0. 

We look for a solution of the form      

! 

y(x ,t) = X (x)T (t). 

We find that the variables can be separated 
    

! 

1
X (x)

d 2X (x)
dx 2

=
1

c2T (t)
d 2T (t)

dt 2
= N  

2. We use the boundary conditions to deduce that N must be negative, i.e.  N = − k2. 
We use the boundary conditions further to find the allowed values of k and hence find X(x). 
We find the corresponding solution of the equation for Τ(t). 
Hence we can write down the solutions of the PDE.  

3. By the principle of superposition, the general solution is a sum over all solutions. 
4. Given the initial conditions, or similar information, the Fourier series can be used to find the  

solution that satisfies initial conditions. 
 

Later on we will use a similar procedure to solve other PDEs. 
 

The Schrödinger Equation 
 

Consider the time dependent Schrödinger equation in 1 dimensional space: 

        

! 

"
!2

2m
#2$(x,t)
#x 2

+ V (x,t)$(x,t) = i! #$(x,t)
#t

. 

In a region of zero potential, V(x, t) = 0, this simplifies to: 

        

! 

"
!2

2m
#2$(x,t)
#x 2

= i! #$(x,t)
#t

. 

Let us solve this subject to boundary conditions Ψ(0, t) = Ψ(L, t) = 0  (as for the infinite potential well). 
 
Step 1: Separation of the Variables 
Our boundary conditions are true at special values of x, for all values of time, so we look for solutions of 
the form  Ψ(x, t) = X(x)T(t). Substitute this into the Schrödinger equation:  

      

! 

"
!2

2m
d 2X (x)

dx 2
T (t) = i! X (x) dT (t)

dt
 

Multiply both sides by  
    

! 

1
X (x)Y ( y)

:           
    

! 

"
!2

2m
1
X

d 2X
dx 2

=
i!
T

dT
dt

 

Now we have separated the variables. The above equation can only be true for all x, t if both sides are 
equal to a constant. It is conventional (for good reasons – see below and PHY202!) to call the constant E. 

So we have    
  

! 

"
!2

2m
1
X
d2X
dx 2

= E       which rearranges to     
  

! 

d2X
dx 2

= "
2mE
!2

X .                 (3) 

And          
  

! 

i!
T
dT
dt

= E    which rearranges to       
  

! 

dT
dt

= "
iE
!
T .                      (4)     

 
Step 2: Satisfying the Boundary Conditions 
 
For X(x) 
Our boundary conditions are  Ψ(0, t) = Ψ(L, t) = 0, which means  X(0) = X(L) = 0.  
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So clearly we need E > 0, so that equation (1) has the form of the harmonic oscillator equation.  

It is simpler to rewrite (1) as 
  

! 

d 2X
dx 2

= "k 2X ,  where   
    

! 

k 2 =
2mE
!2

,   i.e.   
    

! 

E =
!2k 2

2m
. 

Then the general solution for X(x) is   

! 

X(x) = Acoskx + Bsin kx . 

Apply the boundary conditions:  X(0) = 0  gives   A = 0;  we must have B ≠ 0  so  X(L) = 0 requires  

sin kL=0,    i.e.   kn = nπ / L,   so   
    

! 

X n(x) = Bn sin n"x
L

  for  n = 1, 2, 3, …. 

For T(t) 
Equation (4) has solution    

! 

T = T0e
" iEt !   (See first order ODEs). 

So we have solutions:    !tiE
nnnn

ne
L
xn

BtTxXtx !=="
#sin)()(),( , where  

    

! 

En =
!2kn

2

2m
=

n2!2" 2

2mL2
. 

(These are the energy eigenstates of the system.) 
 
Step 3: Constructing the General Solution 

Hence the general solution is  
        

! 

"(x,t) = "n(x,t)
n=1

#

$ = Bn sin n%x
L

exp(&iEnt !)
n=1

#

$ .    

(In general therefore a particle will be in a superposition of eigenstates.) 
 
Step 4: Solution of Complete Problem 
If we know the state of the system at t = 0, we can find the state at any later time. 

For example, suppose that   
      

! 

"(x,0) =
2
L

1
2

sin #x
L

+
1
2

sin 2#x
L

$ 

% 
& 

' 

( 
) .   Then we can deduce that  

        

! 

"(x,t) =
2
L

1
2

sin
#x
L

exp($iE1t !) +
1
2

sin
2#x

L
exp($iE2t !)

% 

& 
' 

( 

) 
* , where  

    

! 

E1 =
!2" 2

2mL2
,  

    

! 

E2 =
4!2" 2

2mL2
. 

 
 

The Laplace Equation in 2D 
 
We now start looking at the diffusion equation, 

  

! 

"2u =
1
h2

#u
#t

. One physical phenomenon governed by this 

equation is heat flow. That is, in many situations, T(x, y, z, t) satisfies 
  

! 

"2T =
1
h2

#T
#t

.   In ‘steady state’ 

problems where nothing is changing with time, the equation simplifies to 02 =! T , which is the Laplace 
equation. (This can be applied to electrostatics if the temperatures were replaced by potentials.) We will 
look at this equation in 2D by considering the following exercises  
 
Exercise 1   
Consider a rectangular metal plate 10 cm wide and very long. The two long sides and the 
far end are held at 0ºC and the base at 100ºC. Find the steady state temperature 
distribution inside the plate. NB. You will need to use the superposition principle at the end 
to satisfy the boundary conditions!! 

Our PDE is  
  

! 

"2T =
#2T
#x 2

+
#2T
#y 2

= 0. 

 
Step 1: Separation of the variables – look for solutions in the form T(x, y) = X(x)Y(y). 

So substituting gives 
    

! 

Y ( y) "
2X (x)
"x 2

+ X (x) "
2Y (y)
"y 2

= 0   and dividing through by X(x)Y(y) we get : 
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! 

1
X (x)

"2X (x)
"x 2

+
1

Y ( y)
"2Y (y)
"y 2

= 0    and so  
    

! 

1
X (x)

"2X (x)
"x 2

= #
1

Y ( y)
"2Y (y)
"y 2

 

 
Step 2: Satisfy the boundary conditions. Considering the BCs, choose the appropriate constant of 
separation. Find the general forms of X(x) and Y(y). Apply relevant BCs. Find the solutions. 
Now we set both sides equal to a constant. When choosing the constant we must think carefully about the 
boundary conditions. We know that X(0) = X(L) = 0 and we know that in the Y direction we expect an 
exponential drop or something similar from T(x, 0) = 100 to T(x,∞) = 0. Think back again to the LHO 
solution and the falling pencil solution for 2nd order ODEs. It is clear now that for a solution in x such that 
X(x) = 0 more than once, the constant must be negative (like a LHO). For convenience we choose the 
constant as -k2 so…. 

                                                 
    

! 

1
X (x)

"2X (x)
"x 2

= #
1

Y ( y)
"2Y (y)
"y 2

= #k 2  

So  
    

! 

"2X (x)
"x 2

= #k 2X (x)    and   
    

! 

"2Y ( y)
"y 2

= k 2Y (y)  with solutions 

  kxBkxAxX sincos)( +=    and   kyky DeCeyY += !)(  

Now we must again think of the boundary conditions and attempt to deduce A, B, C and D. We know that 
X(0) = X(L) = 0  and if this is true then A = 0. Also since X(L) = 0 = B sin kx  then  !nkL =    so we can 

say  
    

! 

X (x) = Bsin n"x
L

.   Now looking at      

! 

Y ( y) = Ce"ky + Deky   and since we know that T(x,y) → 0  as 

y→∞  then we can state that D = 0 and     

! 

Y ( y) = Ce"ky.   
 

So solutions are 
      

! 

T (x, y) = Ce"kyBsin n#x
L

= CBe
"n#y

L sin n#x
L

= Pe
"n#y
10 sin n#x

10
  if P = CB and L = 10. 

 
Step 3: Construct the general solution. 

So the general solution can be written as     
      

! 

T (x, y) = Pne
"n#y

L sin n#x
Ln=1

$

% = Pne
"n#y
10 sin n#x

10n=1

$

%  

This already satisfies the boundary conditions for x, namely that T(0, y) = T(L, y) = 0.  All that remains is 
to calculate the required values of P such that the T(x, 0) = 100  is satisfied. 
 
Step 4: Use the remaining information to solve the complete problem. (Fourier series is useful.) 

Since the temperature at y = 0 is 100, then     

               
    

! 

T (x ,0) = Pne
"n# 0

L sin n#x
L

=
n=1

$

% Pn sin n#x
Ln=1

$

% = Pn sin n#x
10

=100
n=1

$

% . 

Here is a lateral jump that isn’t obvious!!!! Remember from previous lectures that the half-range sine 
series is a sum of sine terms that can represent things like plucked guitar strings. Look how similar this is 
to the expression for T (x, 0) if we set L = 10 and f(x) = 100.  
  

Half-range sine series:       
    

! 

f (x) = bn sin n"x
Ln=1

#

$ ,            where  
    

! 

bn =
2
L

f (x)sin n"x
L

dx
0

L

# . 

So all we have to do now is calculate the half-range sine series in the usual way. 
 

    

! 

Pn =
2
L

f (x)sin
n"x

L
dx

0

L

# =
2
10

100sin
n"x
100

10

# dx = $20 10
n"

cos
n"x
10

% 

& 
' 

( 

) 
* 
0

10

=
$200
n"

cos
10n"
10

$ cos0
+ 

, 
- 

. 

/ 
0  

 



  PHY226 

 Partial differential equations, 3D coordinate systems and Spherical harmonics - Page 8 of 24 

 

    

! 

Pn =
"200
n#

cos10n#
10

" cos0
$ 

% 
& 

' 

( 
) =

"200
n#

cosn# "1( )  

 

So in order for the boundary conditions for T(x, 0) = 100 to be 
satisfied, we must take the following values of Pn in the sum. 

Finally we can state the full solution that satisfies initial 
conditions: 

    

! 

T (x , y) = Pne
"n#y
10 sin n#x

10n=1

$

% =
400
#n

e
"n#y
10 sin n#x

10

& 

' 
( 

) 

* 
+ 

n=1

n=$ odd

%  

 
The Diffusion Equation  

References: Course Pack p.64-69, 102-107. 
 
In classical physics, almost all time dependent phenomena may be described by the wave equation or the 
diffusion equation. At the micro and nanometre scale, diffusion is often the dominant phenomenon.  

The 1D diffusion equation has the form  
      

! 

"2F(x,t)
"x 2

=
1
D
"F(x,t)
"t

. 

F is the quantity that diffuses. It is usually a concentration, for example the concentration of a chemical 
diffusing through a region, the concentration of particles in a liquid, the concentration of defects in a 
solid, concentration of spin densities, etc.  
D is the diffusion constant. D has dimensions [length]2/[time], i.e. units m2 s-1. 
 

Heat conduction also obeys this situation. F is then temperature, T. And many books write 
  

! 

D = h2 =
K
"C

, 

where h2 is the thermal diffusivity of the material, which depends on the thermal conductivity K, the 
density ρ and the specific heat of the material C. (For metals, typically h2 ~ 1×10-4 m2 s-1.)  
 

So we have the heat flow equation    
      

! 

"2T (x,t)
"x 2

=
1
h2

"T(x,t)
"t

. 

We will study heat flow because it is a concept familiar from daily life but the same mathematics can be 
applied to many other diffusion situations.  
 
Thermal Relaxation of a rod with ends held at 0°C 
Consider a perfectly insulated rod of length L. Both ends are held at temperature 0ºC at all times.  
At time t = 0, the temperature distribution along the rod has a given function  T(x, 0) = f (x). 
 

Step 1.  Our differential equation is   
      

! 

"2T (x,t)
"x 2

=
1
h2

"T(x,t)
"t

. 

Look for solutions of the form        

! 

T (x,t) = X (x)"(t) . 

Substituting this into the PDE gives  
    

! 

d 2X (x)
dx 2

"(t) =
1
h2

X (x) d"(t)
dt

. 

Multiply both sides by 
)()(

1
txX !

:     
    

! 

1
X (x)

d 2X (x)
dx 2

=
1
h2

1
"(t)

d"(t)
dt

. 

To be true at all x, t, both sides of the above equation must be equal to a constant. 
 
Step 2.  Since we are told in the boundary conditions that both ends of the rod are held at 0°C at all times 
we choose a negative constant, –k2, to give LHO type solutions, and rearrange to get two ODEs: 

n Pn 

1 ( )
!!
40011200

=""
"  

2 
0)11(

2
200

=!
!
"

 

3 
!! 3
400)11(

3
200

=""
"  



  PHY226 

 Partial differential equations, 3D coordinate systems and Spherical harmonics - Page 9 of 24 

    

! 

d 2X (x)
dx 2

= "k 2X         which has general solution       

! 

X (x) = Acoskx + Bsin kx  

    

! 

d"(t)
dt

= #k 2h2"(t)      which has general solution       

! 

"(t) = Ce#k 2h2t  

 
We have Τ(0, t) = Τ(L, t) = 0,   so  X(0) = X(L) = 0,   so (similar to previous problems) A = 0,  B = nπ / L. 

So we have solutions  
      

! 

Tn(x,t) = X (x)"(t) = Bn sin n#x
L

e
$

t
% n , where  

  

! 

" n =
1

h2k 2
=

L
n#h
$ 

% 
& 

' 

( 
) 

2

. 

Step 3.  The general solution therefore is  
      

! 

T (x,t) = Tn(x,t)
n

" = Bn sin n#x
L

e
$

t
% n

n

" . 

 

Step 4.  At time t = 0, the temperature distribution is T(x, 0) = f(x), so  
      

! 

T (x,0) = Bn sin n"x
Ln

# = f (x). 

Thus the coefficients Bn are the coefficients of the half-range Fourier sine series of the function  f (x). 
 
Let’s say that the temperature distribution along the rod 
at t = 0 is triangular. 
 

xxf =)(            for 20 Lx <<  
 

Lxxf +!=)(    for  LxL <<2  
 
i.e. temperature midway in °C is equal to half distance in m. 
 

Half-range sine series expression:      
    

! 

f (x) = bn sin n"x
dn=1

#

$ ,      where       
    

! 

bn =
2
d

f (x)sin n"x
d

dx
0

d

# . 

 
Here d = L, 
 

So   
    

! 

bn =
2
L

f (x)sin n"x
L

dx
0

L

# =
2
L

x sin n"x
L

dx +
0

L 2

# 2
L

(L$ x)sin n"x
L

dx
L 2

L

#  

    

! 

x sin n"x
L# dx   is found by parts      

! 

set u = x so du = dx      
        

! 

set dv = sin n"x
L

dx so v = #
L

n"
cos n"x

L
 

So   
    

! 

x sin
n"x
L# dx = $

Lx
n"

cos
n"x
L

+
L

n"
cos

n"x
L# dx = $

Lx
n"

cos
n"x
L

+
L2

n2" 2 sin
n"x

L
 

 

So 
    

! 

bn =
2
L
"

Lx
n#

cos n#x
L

+
L2

n2# 2 sin n#x
L

$ 

% 
& 

' 

( 
) 
0

L 2

+
2
L

Lsin n#x
L

dx +
2
LL 2

L

* Lx
n#

cos n#x
L

"
L2

n2# 2 sin n#x
L

$ 

% 
& 

' 

( 
) 

L 2

L

 

 

    

! 

bn =
2
L
"

L2

2n#
cos n#

2
+

L2

n2# 2 sin n#
2

$ 

% 
& 

' 

( 
) " 2

L
n#

cos n#x
L

$ 

% 
& 

' 

( 
) 

L 2

L

+
2
L

L2

n#
cosn# " L2

2n#
cos n#

2
+

L2

n2# 2 sin n#
2

$ 

% 
& 

' 

( 
)  

 

    

! 

bn = "
L

n#
cos n#

2
+
2L

n2# 2 sin n#
2

$ 

% 
& 

' 

( 
) " 2

L
n#

cosn# " L
n#

cos n#
2

$ 

% 
& 

' 

( 
) +

2L
n#

cosn# " L
n#

cos n#
2

+
2L

n2# 2 sin n#
2

$ 

% 
& 

' 

( 
)  

 

    

! 

bn =
4L

n2" 2 sin n"
2
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n = 1, 
  

! 

b1 =
4L
" 2  n = 2,   

! 

b2 = 0 n = 3, 
  

! 

b3 = "
4L
32# 2 = "

4L
9# 2  n = 4,   

! 

b4 = 0  

 

So     
    

! 

bn =
4L

n2" 2 for n =1,  5,  9             and           
    

! 

bn = "
4L

n2# 2 for n = 3,  7,  11 

 

Half-range sine series is written:
    

! 

f (x) = bn sin n"x
dn=1

#

$ ,       so here    
    

! 

f (x) =
4L

n2" 2
n=1

#

$ sin n"
2

sin n"x
L

 

 

Step 5.  At time t = 0, the temperature distribution is T(x, 0) = f (x), so  
      

! 

T (x,0) = Bn sin n"x
Ln=1

# = f (x) 

Therefore comparing terms 
    

! 

Bn =
4L

n2" 2 sin n"
2

. 

 
Step 6.  The full solution for the rod is therefore: 

 
      

! 

T (x,t) = Bn sin n"x
L

e
#

t
$ n

n

% =
4L

n2" 2 sin n"
2n=1

&

% sin n"x
L

e
#

t
$ n ,    where   

  

! 

" n =
1

h2k 2
=

L
n#h
$ 

% 
& 

' 

( 
) 

2

 

 
 

      

! 

T (x,t) =
4L
" 2

1
1

sin "x
L

e
#
" 2h2t

L2 #
1
9

sin 3"x
L

e
#
9" 2h2t

L2 +
1
25

sin 5"x
L

e
#
25" 2h2t

L2 # .....
$ 

% 
& 
& 

' 

( 
) 
) 
 

 
Now we have all the boundary conditions, we can stick in appropriate values of h and find how the 
temperature profile drops over time. It can be shown that T(x, t) with increasing time looks like this: 
 

 
Notice how the fundamental frequency lasts the longest. 
 
Thermal relaxation of an isolated body 
In the last example the ends of rod were immersed in a massive reservoir at 0°C so that heat was able to 
continually flow out of the rod. Now imagine that the ends are insulated just like the rest of the rod. 
Imagine we start at time = 0 with the same triangular temperature distribution as before. With time, the 
temperature distribution will become uniform. The temperature of the body will then be at some non zero 
temperature. 

The rate of heat flow is known to be proportional to the temperature gradient  
      

! 

"T(x,t)
"x

. 

The body being isolated means there is no heat flow out of the ends so at  x = 0 and x = L, 
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! 

"T(x,t)
"x x= 0

=
"T (x,t)
"x x= L

= 0. Applying these boundary solutions to the general solution for X(x) we find 

 

that since,     

! 

X (x) = Acoskx + Bsin kx    then    
    

! 

"T(x ,t)
"x x= 0

=
dX (x)

dx x= 0

= #Ak sin kx + Bk coskx . 

 
Therefore      

! 

0 = "Ak sin k0 + Bk cosk0     and  so      

! 

0 = B  

and         

! 

0 = "Ak sin kL + Bk coskL       and so        

! 

0 = "Ak sin kL  and therefore    
    

! 

kL = n" or k =
n"
L

. 

Putting this back into expression for X(x)  we find  
    

! 

X (x) = Acoskx = An cos n"x
L

. 

Therefore following the same steps as above we find the solutions and the corresponding general solution 
having the respective forms: 

    

! 

Tn(x ,t) = An cos(n"x/L)e#t/$ n       and         
    

! 

T (x ,t) = Tn(x ,t)
n

" = An cos n#x
L

e
$

t
% n

n

" . 
 

We are therefore left with the cosine rather than the sine terms in the expression and so we must solve the 
half range COSINE series for the temperature function f (x). 
 

Half-range cosine series:   
    

! 

f (x) =
1
2

a0 + an cos n"x
Ln=1

#

$ ,         where  
    

! 

an =
2
L

f (x)cos n"x
L

dx
0

L

# . 

 

This can be shown to give coefficients:  
  

! 

a0 =
L
2

    and     
    

! 

an =
2L

n2" 2 2cos n"
2
# cosn" #1

$ 

% 
& 

' 

( 
) , 

giving   
    

! 

f (x) =
L
4

+
2L

n2" 2
n=1

#

$ 2cos n"
2
% cosn" %1

& 

' 
( 

) 

* 
+ cos n"x

L
. 

 
n = 1, 
  

! 

a1 = 0  n = 2, 
  

! 

a2 =
2L
22" 2 #4( ) =

#8L
22" 2  n = 3,  

  

! 

a3 = 0 
n = 4, 
  

! 

a4 = 0  
n = 5, 
  

! 

a5 = 0 
 

n = 6,   
    

! 

a6 =
2L
62" 2 2cos3" # cos6" #1( ) =

2L
62" 2 (#4) =

#8L
62" 2  

 

Comparison with the general solution at time = 0  i.e.   
      

! 

T (x,0) = Tn(x ,0)
n

" = An cos n#x
Ln

"    allows the 

coefficients An to be determined. 
The full solution then:  

   
      

! 

T (x,t) = An cos n"x
L

e
#

t
$ n =

L
4
#
8L
" 2

1
22

cos 2"x
L

e
#
22 h2" 2t

L2 +
1
62

cos6"x
L

e
#
62 h2" 2t

L2 + ....
% 
& 
' 

( ' 

) 
* 
' 

+ ' n

, . 

Notice that as t → ∞,  
  

! 

e
"

n2h2# 2t
L2

$ 

% 
& 
& 

' 

( 
) 
) * 0   and so 

    

! 

T (x ,") =
L
4

    This is the final uniform temperature of the 

rod. 
 
 
Concluding Summary 

1. Sinusoidal functions of x are solutions of the diffusion equation. Hence Fourier methods are again 
useful. (In fact Fourier actually invented them to solve heat flow problems.) 

2. The temperature distribution decays exponentially with time. 
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3. The time constant of the decay is proportional to k-2, i.e. to λ2 and therefore also L2.  So the 
longest wavelengths (such as the fundamental) last longest. 

4. Hence if we write an initial temperature distribution as a Fourier series, normally the first term is 
the most important in determining the behaviour at later times. 

 
•  Importance of  τ ∝  λ2. 

To see points 3&4 more clearly, we can rewrite 
      

! 

T (x,t) = Tn(x,t)
n

" = Bn sin
n#x
L

exp($n2t /%1)
n

"  

where τ1 is the relaxation time of the ‘fundamental’ n = 1 term,   
  

! 

" n =
L

h#
$ 

% 
& 

' 

( 
) 

2

. 

After a time t = τ, for example, the nth term has decayed by a factor  exp(-n2). Looking at values for this 
for n = 1, 2, 3, … below, we can see that the higher modes decay very fast indeed: 
 

1e!  0.37 
4e!  0.02 
9e!  1.2×10-4 

16e!  1.1×10-7 
25e!  1.4×10-11 
36e!  2.3 ×10-16 
49e!  5.3×10-22 

 
To know exactly how the temperature profile changes with time then we need all the terms. But usually a 
very good approximation can be obtained by considering just the first term.  
 
•  Importance of  τ ∝  L2

 

We are used to thinking of time scaling linearly with distance.  For example, if it takes us 20 mins to walk 
a mile it takes 40 mins to walk 2 miles etc.  But ‘diffusion time’ scales with the square of the length.  
Values of h2 vary between ~1!10-4 m2 s-1 for a metal and ~1!10-7 m2 s-1 for cork.   

So using 
2

!
"

#
$
%

&=
hn
L

n '
(  from previous page in 1 second, heat travels a distance of very approximately 

hL !" , which is ~3 cm for a metal,  ~1 mm for cork. 
 
On an everyday scale.  If food is cut up smaller it cooks faster!  (Cookery books tell you the cooking time 
scales as the weight (= length3), but actually it scales as the square of the thinnest dimension!) 
On the large scale.  Why don’t we heat up because of the earth’s core? The heat must travel through 
about 30 km of sand and gravel. Taking the diffusion constant for this material to be  h2 ~ 1×10-6 m2 s-1,  
we have  τ  ~ L2 / π2h2 ~1014 seconds  ~106 years. 

On the small scale. Chemical diffusion constants for ions in water, D, are of the order of  D ~ 10-9 m2 s-1 
where 2hD = . Our bodies function because ions can diffuse in and out of our muscle cells, acting as 
switches. The time taken for ions to diffuse across a cell of width L= 10-6 m is τ ~ L2 / π2 D ~10-4

 seconds, 
which is suitably quick.  Could humans be scaled up so our cells were 1 cm across and still function?  No! 
Because the time would then be τ ~ L2 / π2 D ~104

 seconds which is too slow! 
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3D Coordinate Systems  
References: Course Pack p.121-123, 131-146. 

 

3D Cartesian Coordinates 

We can describe all space using coordinates (x, y, z), each variable ranging from -∞ to +∞. 
 

1.  PDEs in 3D Cartesian Coordinates 

Consider the wave equation. In one dimensional space we had   
      

! 

"2#(x,t)
"x 2

=
1
c2
"2#(x,t)
"t 2

.   

This can be generalised to 2D (see Course Pack p.111-117) and 3D.   

In 3D the wave equation becomes  
      

! 

"2#(x, y, z,t)
"x 2

+
"2#(x, y, z,t)

"y 2
+
"2#(x, y, z,t)

"z2
=
1
c2
"2#(x, y, z,t)

"t 2
, 

which may be written also as   
      

! 

"2#(x, y, z,t) =
1
c2
$2#(x, y, z,t)

$t 2
. 

 
Let us look for a solution of the form        

! 

"(x, y, z,t) = X (x)Y ( y)Z(z)T (t) , i.e. we try to separate the 
variables, as done in 1D. Differentiating gives  
 

   
      

! 

"2#(x, y, z,t)
"x 2

= Y ( y)Z(z)T (t) d 2X
dx 2

,  and similarly  
      

! 

"2#(x, y, z,t)
"y 2

= X (x)Z(z)T (t) d 2Y
dy 2

,         

   
      

! 

"2#(x, y, z,t)
"z2

= X (x)Y ( y)T (t) d 2Z
dz2

,         
      

! 

"2#(x, y, z,t)
"t 2

= X (x)Y ( y)Z(z) d 2T
dt 2

. 

 
Substituting these into the PDE then dividing through by       

! 

"(x, y, z,t) = X (x)Y ( y)Z(z)T (t) , we get        

          
    

! 

1
X (x)

d 2X (x)
dx 2

+
1

Y ( y)
d 2Y (y)

dy 2
+

1
Z(z)

d 2Z(z)
dz2

=
1

c2T (t)
d 2T (t)

dt 2
.     (*) 

 

Each term in this expression is a function of only one variable. In order for the equation to hold for all x, 
y, z and t, each term must equal a constant. We want a wave solution to the wave equation, i.e. harmonic 
terms, so we choose each term to equal a negative constant. We let 

      
    

! 

1
T (t)

d 2T (t)
dt 2

= "# 2 ,     
    

! 

1
X (x)

d 2X (x)
dx 2

= "kx
2 ,    

    

! 

1
Y ( y)

d 2Y (y)
dy 2

= "k y
2,    

    

! 

1
Z(z)

d 2Z(z)
dz2

= "kz
2 . 

Comparing with equation (*) we see that the constants, ω, kx, ky, kz  are related by  
  

! 

" 2

c2
= kx

2 + k y
2 + kz

2 = k 2 . 
 

Each of the ODEs above has the normal harmonic solutions, which we can write in terms of sines and 
cosines below. (The bracketed layout simply means that each variable can be represented either by sine or 
cosine depending on the boundary conditions and must not be confused with matrices). 

        
    

! 

X (x) ~
sin kx x
coskx x

" 
# 
$ 

% 
& 
' 

,   
    

! 

Y ( y) ~
sin k y y
cosk y y

" 
# 
$ 

% 
& 
' 

,   
    

! 

Z(z) ~
sin kz z
coskz z

" 
# 
$ 

% 
& 
' 

,   
    

! 

T (t) ~
sin"t
cos"t

# 
$ 
% 

& 
' 
( 

. 

Giving special solutions of the form 
      

! 

"(x, y, z,t) = A
sin kx x
coskx x

# 
$ 
% 

& 
' 
( 

sin k y y

cosk y y

# 
$ 
% 

& 
' 
( 

sin kz z
coskz z

# 
$ 
% 

& 
' 
( 

sin)t
cos)t

# 
$ 
% 

& 
' 
( 

. 

 

Or sometimes it is more convenient to use complex exponentials,  
              

! 

X (x) ~ e± ikx x , Y ( y) ~ e± ik y y, Z(z) ~ e± ik z z , T (t) ~ e± i"t . 
Then we get solutions such as 
 
              

! 

"(x , y , z,t) = Aexp(i#t $ ikx x $ ik y y $ ikz z) = Aexp(i#t $ i k % r) ,      where     

! 

k = kx

! 
i + k y

! 
j + kz

! 
k . 

As we might have expected, the solutions are plane waves with wavevector k (which is also the direction 
of travel of the wave) and frequency ω = ck. 
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A general solution can then be written as a sum over all solutions, and applying boundary conditions we 
can determine which terms contribute and the allowed values of kx, etc. 
For example, suppose we have a box with dimensions L1, L2, L3 in the x, y, z  directions respectively and 
know that Ψ must vanish at the walls. Then the solutions will be:  

          

! 

"(x, y, z,t) = Asin kx x sin k y y sin kz z sin#t ,  where 
  

! 

kx =
n1"
L1

,  
  

! 

k y =
n2"
L2

, 
  

! 

kz =
n3"
L3

. 

So each solution, or ‘mode’ will be characterized by three integers, n1, n2, n3. 

And this mode will have angular frequency  
    

! 

" 2 = c2(kx
2

+ kz
2

+ kz
2) = # 2c2

n1
2

L1
2 +

n2
2

L2
2 +

n3
2

L3
2

$ 

% 
& & 

' 

( 
) )  . 

An important question which arises in various areas of physics is the question of how many different 
modes (i.e. unique combinations of integers n1, n2, n3) exist in a given frequency range, or in the 
frequency interval  ω  to  ω + dω?  The answer is central to the derivation of Planck’s Law for blackbody 
radiation, the Debye theory of heat capacities of solids, and various other situations.  
 
2.  Integrals in 3D Cartesian Coordinates   
We have dV = dx dy dz,  and must perform a triple integral over x, y and z.  Normally we will only choose 
to work in Cartesian coordinates if the region over which we are to integrate is cuboid or comprises all 
space. Integrating over spherical regions, for example, is very nasty in Cartesian coordinates! 
 
Example 

Find the 3D Fourier transform, 
    

! 

F(k) =
1

(2" )3/2 f (r)e#ik $rdV
all space
%%% ,  of  

      

! 

f (x , y , z) =
1, x < a, y < b, z < c

0, otherwise

" 
# 
$ 

% $ 
. 

 
The integral is just the product of three 1D integrals, and is thus easily evaluated: 

      

! 

F(kx ,k y,kz ) =
1

(2" )3 2
e#ikx xdx

#a

a

$ e# ik y ydy
#b

b

$ e#ik z zdz
#c

c

$ =
1

(2" )3 2
eikx a # e#ikx a

ikx

% 

& 
' 

( 

) 
* 

eik y b # e#ik y b

ik y

% 

& 
' ' 

( 

) 
* * 

eik z c # e#ik z c

ikz

% 

& 
' 

( 

) 
*  

This is therefore a product of three sinc functions,  i.e. 
      

! 

eikx a " e"ikx a

ikx

# 

$ 
% 

& 

' 
( =
2sin(kxa)

kx

= 2a sinc(kxa). 

So doing this for all three components we get: 
 

      

! 

F(kx ,k y ,kz ) =
8

(2" )3 2
sin(kxa)

kx

sin(k yb)
k y

sin(kzc)
kz

=
8abc

(2" )3 2
sinc(kxa)sinc(k yb)sinc(kzc) . 

Integrals of this sort are encountered in condensed matter physics in crystals with rectangular lattices.   
 
 

3D Spherical Polar Coordinates 
 
1.  Spherical Polar Coordinates: Revision    
Spherical polar coordinates are the coordinate system of choice in almost all 3D problems. This is 
because most 3D objects are shaped more like spheres than cubes, e.g. atoms, nuclei, planets, etc.  
Many potentials (Coulomb, gravitational, etc.) depend on   

! 

r = x 2 + y 2 + z2 .  
Physicists define r, θ, φ  as shown in the figure. They are related to   
Cartesian coordinates by       

! 

x = r sin" cos#,  y = r sin" sin#,  x = r cos".    
 
2.  3D Integrals in Spherical Polar Coordinates 
The volume element is        

! 

dV = r 2 sin" dr d" d#     (given on data sheet). 
To cover over all space, we take         

! 

0 " r <#, 0 "$ < % , 0 " & < 2% . 
 
3.  ∇2 in Spherical Polar Coordinates: Spherical Solutions 
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As given on the data sheet,   
    

! 

"2 =
1
r 2

#
#r

r 2 #
#r

$ 

% 
& 

' 

( 
) +

1
r 2 sin*

#
#*

sin* #
#*

$ 

% 
& 

' 

( 
) +

1
r 2 sin2*

#2

#+ 2
. 

 
We’ll look first at problems in which the solutions are known to be ‘spherically symmetric’. That is, the 
solutions depend on r, but have no angular dependence. They are functions of r but not of θ or φ.   
 

For example if  F = F(r)  then    
    

! 

"2F(r) =
1
r 2

d
dr

r 2 d
dr

F(r)
# 

$ 
% 

& 

' 
( . 

 
(a) The Laplace Equation   ∇2V(r) = 0. 

Exercise   Find spherically symmetric solutions of Laplace Equation  ∇2V(r) = 0. 

We have     
    

! 

"2V (r) =
1
r 2

d
dr

r 2 d
dr

V (r)
# 

$ 
% 

& 

' 
( = 0 .   

In this case we can actually find V(r) directly by rearranging and integrating, in steps. 
 

Multiplying both sides by r2 gives 
    

! 

d
dr

r 2 d
dr

V (r)
" 

# 
$ 

% 

& 
' = 0.  

Integrating both sides gives 
    

! 

r 2 d
dr

V (r) = A   where A is a constant.  This rearranges to  
    

! 

d
dr

V (r) =
A
r 2

. 

Integrate both sides again and we get the general solution:     B
r
ArV +!=)( .  

 

Application 

In electrostatics we want a potential which vanishes at ∞, so set  B = 0, then  
r
ArV !=)( .   

This is the standard Coulomb potential from a point charge at the origin:  
r

QrV
04

)(
!"

= , with 
04!"
QA #

= . 

We have demonstrated not only that the Coulomb potential satisfies Laplace’s equation but that this is the 
only spherically symmetric solution. 
 
(b) The Wave Equation 

In 3D the wave equation is  
  

! 

"2# =
1
c2
$2#
$t 2

.   

Let’s only look for spherically symmetric solutions Ψ(r,t), so the equation can be written 

  
      

! 

"2#(r,t) =
1
r 2

$
$r

r 2 $#(r,t)
$r

% 

& 
' 

( 

) 
* =

1
c2
$2#(r,t)
$t 2

. 

As previously we look for solutions of the form        

! 

"(r,t) = R(r)T (t) , substitute this back in the equation, 
and then separate the variables.  

    

! 

1
r 2

d
dr

r 2 T (t)dR(r)
dr

" 

# 
$ 

% 

& 
' =

1
c2

R(r)d 2T (t)
dt 2

     gives      
    

! 

1
R(r)r 2

d
dr

r 2 dR(r)
dr

" 

# 
$ 

% 

& 
' =

1
c2T (t)

d 2T (t)
dt 2

 

Each side of the equation must equal a constant, and we want oscillating solutions so we choose a 
negative constant. In order to help the maths let’s set the constant as   

! 

" # c( )2:  

    

! 

1
R(r)r 2

d
dr

r 2 dR(r)
dr

" 

# 
$ 

% 

& 
' =

1
c2T (t)

d 2T (t)
dt 2

= (
)
c

" 

# 
$ 

% 

& 
' 

2

 

The equation for  T(t)  is easy to solve.  )()()( 2
2

2
2

2

tT
c

tTc
dt
tTd

!
!

"=#
$

%
&
'

("=      giving       

! 

T (t) ~ e± i"t . 
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Now we need to solve     )()()(1 2
2

2
2 rRkrR

cdr
rdRr

dr
d

r
!="

#

$
%
&

'!="
#

$
%
&

' ( ,       (*)      

where  
  

! 

k 2 =
" 2

c2
 . 

Equations like this occur frequently. There is a standard trick which is to define 
    

! 

R(r) =
u(r)

r
, solve for 

u(r) and thus find R(r).   

Start by differentiating R(r) with respect to r  using the product rule:          
    

! 

dR
dr

=
1
r

du(r)
dr

" u(r) 1
r 2

. 

Multiply both sides by r2  gives      
    

! 

r 2 dR
dr

= r du(r)
dr

" u(r). 

Now differentiate again using the product rule.     
    

! 

d
dr

r 2 dR
dr

" 

# 
$ 

% 

& 
' = r d 2u(r)

dr 2
+

du(r)
dr

(
du(r)

dr
= r d 2u(r)

dr 2
 

Therefore    
    

! 

1
r 2

d
dr

r 2 dR(r)
dr

" 

# 
$ 

% 

& 
' =
1
r

d 2u(r)
dr 2

. 

 

So equation (*) becomes:   
    

! 

1
r

d 2u(r)
dr 2

= "k 2 u(r)
r

.    The factors of  r cancel, giving    
    

! 

d 2u(r)
dr 2

= "k 2u(r) . 

 
Thus we have solutions of the form: 
 

    

! 

u(r) = Aeikr + Be" ikr         
    

! 

R(r) =
Aeikr

r
+

Be" ikr

r
        

      

! 

"(r,t) = R(r)T (t) =
Aeikr + Be#ikr( )

r
ei$t . 

 

For waves moving out from the origin     
      

! 

"(r,t) =
Aeikrei#t

r
=

Aei(kr+#t)

r
. 

 

For waves moving in towards the origin     
      

! 

"(r,t) =
Be# ikrei$t

r
=

Be# i(kr#$t)

r
 

 
 
These are spherical waves moving in and out from the origin.   
Note the factor of  1/r.  Intensity is related to amplitude squared. Our solution gives |Ψ(r, t)|2 ~ 1 / r2.   
This is the well known inverse square law. 
 

Many other spherical equations and problems (e.g. heat flow in a sphere) can be solved in a similar way. 
 
Exercise 1   Show by integration in spherical coordinates that a sphere of radius R has volume 4πR3/3.  

 We have   
      

! 

V = r 2 sin" dr d" d#
sphere
$$$ = d#

0

2%

$ sin" d"
0

%

$ r 2dr
0

R

$ = #[ ]0
2%

 &cos"[ ]0
%

 r 3

3
' 

( 
) 

* 

+ 
, 
0

R

=
4%R3

3
 . 

 

Exercise 2   Find the Fourier transform of a screened Coulomb potential,  
    

! 

U (r) =
e"#r

4$%0r
.   

[This exercise is relevant to determining the scattering of electrons by a nucleus. The screening comes 
from the electrons bound in the atom. You will meet integrals like this in the Y3 nuclear physics module.]  
 

As before we have the 3D Fourier transform 
    

! 

F(k) =
1

(2" )3/2 f (r)e#ik $rdV
all space
%%% .   
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In this case f(r) = U(r) is a function only of the magnitude of r and not its direction and so has perfect 
radial symmetry. Again the volume element is         

! 

dV = r 2 sin" dr d" d#    (given on data sheet). 

We therefore have   
      

! 

F(k) =
1

(2" )3/2 U (r)e#ik $r sin% dr d% d&
all space
''' .   

There is a standard ‘trick’ which is to choose the direction of k to be parallel to the polar (z) axis for the 
integral. Then k⋅r becomes |k| |r| cosθ. The whole integral is a function only of the magnitude of k, not its 
direction, i.e. F(k) becomes F(k):   

    
    

! 

F(k) =
1

(2" )3/2
e#$r

4"%0r
e#ikrcos&r 2 sin& dr d& d'

all space
(((  

    

! 

=
1

(2" )3/2
1
4"#0

d$
0

2"

% dr re&'r

0

(

% d) e& ikrcos) sin)
0

"

%   

The integral over φ is trivial: it just gives a factor of 2π.  
Note that the factor e-ikrcos

θ  involves r and θ. We should now decide which integral we do next. The 
presence of the sinθ  together with the e-ikrcos

θ makes integration by substitution over θ the obvious 
choice: 

i.e. let           

! 

u = ikr cos" so du = #ikr sin" d"    Rewrite 
    

! 

sin" e#ikrcos"$ d" = #sin" e#u du
ikr sin"$ =

e#u

ikr
  

So        
      

! 

sin" e#ikrcos" d" =
1

ikr
e# ikrcos"[ ]0

$
=
1

ikr0

$

% eikr # e# ikr( ) =
1
kr
2sin kr =

2sin kr
kr

= 2sinc(kr)  

We are then left with the integral over r: 

    

! 

F(k) =
1

(2" )3/2
1
4"#0

2" dr re$%r

0

&

' 2sin kr
kr

   
    

! 

=
1

(2" )3/2
1
#0k

(sin kr) e$%r dr
0

&

' .    

This type of integral was met earlier in the tutorial question exercises on Fourier transforms. The trick is 
to write the sine in terms of complex exponentials:       

    

! 

(sin kr) e"#r dr =
1
2i

eikr " e"ikr[ ]e"# r

0

$

%
0

$

% dr =
1
2i

e"r(#" ik ) " e"r(#+ ik )[ ]dr
0

$

% =
1
2i

1
# " ik

"
1

# + ik
& 

' 
( 

) 

* 
+ =

k
#2 + k 2

 

This gives the final result:     
    

! 

F(k) =
1

(2" )3/2
1

#0($2 + k 2)
  . 

 
 

The Spherical Harmonics 
References:  Course Pack p.83-86, 125-128. 

Previously we stated that for spherical polar coordinates,    

    
    

! 

"2 =
1
r 2

#
#r

r 2 #
#r

$ 

% 
& 

' 

( 
) +

1
r 2 sin*

#
#*

sin* #
#*

$ 

% 
& 

' 

( 
) +

1
r 2 sin2*

#2

#+ 2
. 

We also stated that solutions which are spherically symmetric are only a function of radius. Now we 
move to the more general case of solutions which depend on r, θ and φ.  In this case we need to consider 
the full form of ∇2, as given above. 

Spherical harmonics are very tricky to visualise in 3D. Whilst everyone can imagine both the ground state 
of a particle in an infinite quantum well and the 2D representation of 2 harmonics of a wave distribution 
in x and y interacting on a plate (as shown below) it is another matter entirely to visualise the spherical 
harmonics that you would expect in a 3D spherical potential well !!! 
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To help visualisation we will base our discussion around the hydrogen atom and its various energy states. 
 

Bohr and Schrodinger both predicted that the energy levels of the H atom were:  
      

! 

En = "
13.6 eV

n2
. 

This means that the energy of an electron in any excited orbital depends purely on the energy level in 
which it resides. From your knowledge of chemistry, you will know that each energy level can contain 
more than one electron. These electrons must therefore have the same energy.  

An electron probability cloud (EPC) is a schematic representation of the likely position of an electron at 
any time. The figure below shows the EPCs corresponding to the ground state and some excited states of 
the hydrogen atom. As you can see for each energy level there are several different electron probability 
cloud distributions corresponding to the different 3D harmonic solutions at that level.  

In Quantum Mechanics we would say that there exists more than one quantum state corresponding to 
each energy level of the H atom. (Actually there are 2n2 different quantum states for the nth energy level). 

For the 1D case in Quantum Mechanics it was sufficient to define a quantum state fully using just one 
quantum number, e.g. n = 2 because our 
well extended only along the x axis. 
However in 2D and 3D we have to 
consider multiple axes within a 3D 
potential well, and since the probability 
density functions corresponding to the 
EPCs are mostly not radially symmetric, 
we must represent wavefunctions with the 
same energy but different eigenfunctions, 
using a unique set of quantum numbers. 
Of the 3 quantum numbers used to 
represent the special geometry of spherical 
waves in 3D, n is defined as the principal 
quantum number (and sets the value of the 
energy level of the wave). For each wave 
with quantum number n, there exist (n - 1) 
quantum states of  l from l = 0 to l = (n - 
1) where l is defined as the orbital 
quantum number. So for example an 
electron in the 3rd excited state can be in 
(n=3, l=0), or (n=3, l=1) or (n=3, l=2) 
quantum states.  
In addition each one of these quantum states has further states represented by another quantum number m 
defined as the magnetic quantum number. Whereas l is a positive integer, m is a positive or negative 
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integer where       

! 

|m| "  l . This means that for a given l, there are 2l+1 allowed values of m:  m = 
0, 1, 2,.. l± ± ± .  

(A 4th quantum number defines spin - an intrinsic property of the particle - but since this does not 
influence spatial geometry it will not be detailed here except to say that for every combination of n,l,m 
there also exists an additional spin up and spin down configuration. All these combine to make up the 
total 2n2 different quantum states mentioned earlier.) 
 
Since the most important quantum numbers are n and l, we typically refer to them using a combination of 
the numerical value of n, and a letter to represent l as shown in the table below. 
 

Quantum number Standard 
terminology for n 

Standard 
terminology for l 

0  s 

1 1 (K shell) p 

2 2 (L shell) d 

3 3 (M shell) f 

All combinations of quantum numbers characterising the ground state, 1st and 2nd excited states are shown 
below. 

 
The electron in the hydrogen atom sees a spherically symmetric potential, so it is logical to use spherical 
polar coordinates to develop the Schrodinger equation.  

In 3D Cartesian coordinates the time independent Schrodinger equation can be written as: 

      

! 

"
!2

2m
#2$
#x 2

+
#2$
#y 2

+
#2$
#z2

% 

& 
' 

( 

) 
* + V (x , y , z)$(x , y , z) = E$(x , y , z)    i.e. 

        

! 

"
!2

2m
#2$+ V (x, y, z)$(x, y, z) = E$(x, y, z) 

Since    
    

! 

"2 =
1
r 2

#
#r

r 2 #
#r

$ 

% 
& 

' 

( 
) +

1
r 2 sin*

#
#*

sin* #
#*

$ 

% 
& 

' 

( 
) +

1
r 2 sin2*

#2

#+ 2
  in spherical polar coordinates, 

the time independent Schrodinger equation becomes: 
        

! 

"
!2

2m
#2$(r,%,& ) + V (r)$(r,%,&) = E$(r,%,&) . 

It is well beyond the scope of this course to solve the 3D TISE but it can be shown (eventually) that the 
solution as usual can be written as: 

      

! 

"(r,#,$) = R(r)P(#)F($) ,     

in which each function for the three spatial variables gives rise and is therefore associated with the three 
quantum numbers associated with the spatial geometry of the hydrogen energy levels. 
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The function R(r) contains the solution to the radial part of the TISE and the principal quantum number 
dependency n. The function P(θ) determines the magnitude of the orbital angular momentum and defines 
the orbital quantum number dependency  l, and the function F(φ) contains the magnetic quantum number 
dependency m. 
 
The full solution       

! 

"(r,#,$) = R(r)P(#)F($) , for the ground state and first few excited states 
corresponding to each specific combination of quantum numbers is shown below. a0 is the first Bohr 
radius corresponding to the ground state of the H atom ….. 
 
Quantum numbers for 3D spatial 

geometry 
Normalised solution of the TISE for Hydrogen atom 

n l m R(r) P(θ) F(φ) 

1 0 0 
  

! 

2
a0
3 2 e"r a0  

! 

1
2

 

! 

1
2"

 

2 0 0 
  

! 

1
2 2a0

3 2
2 " r

a0

# 

$ 
% 

& 

' 
( e"r 2a0  

! 

1
2

 

! 

1
2"

 

2 1 0 
  

! 

1
2 6a0

3 2

r
a0

" 

# 
$ 

% 

& 
' e(r 2a0  

  

! 

6
2

cos"  

! 

1
2"

 

2 1 ±1 
  

! 

1
2 6a0

3 2

r
a0

" 

# 
$ 

% 

& 
' e(r 2a0  

  

! 

3
2

sin"  
  

! 

1
2"

e± i#  

3 0 0 
  

! 

2
81 3a0

3 2
27 "18 r

a0
+ 2 r 2

a0
2

# 

$ 
% 

& 

' 
( e"r 3a0  

! 

1
2

 

! 

1
2"

 

3 1 0 
  

! 

4
81 6a0

3 2
6 " r

a0

# 

$ 
% 

& 

' 
( 

r
a0

e"r 3a0  
  

! 

6
2

cos"  

! 

1
2"

 

3 1 ±1 
  

! 

4
81 6a0

3 2
6 " r

a0

# 

$ 
% 

& 

' 
( 

r
a0

e"r 3a0  
  

! 

3
2

sin"  
  

! 

1
2"

e± i#  

3 2 0 
  

! 

4
81 30a0

3 2

r 2

a0
2 e"r 3a0  

  

! 

10
4

3cos2" #1( ) 

! 

1
2"

 

Once we have the solution to the wave equation in 3D spherical polar coordinates we can deduce the 
probability function.  
For example the probability density function in 3D 
for the ground state (1,0,0) is found as follows.  
For the (1,0,0) harmonic mode 

      

! 

"(r,#,$) = R(r)P(#)F($) =
2

a0
3/2 e%r/a0 1

2
1
2&

=
1
& a0

3/2
e%r/a0

 

So 
      

! 

"(r,#,$) 2 =
1
% a0

3 2
e&r a0

' 

( 
) ) 

* 

+ 
, , 

2

=
1
%a0

3 e&2r a0  

It takes this comparatively simple form because  
the 1s state is spherically symmetric and therefore no angular terms appear. The radial probability density 
for the hydrogen ground state is obtained by multiplying the square of the wavefunction by a spherical 
shell volume element. 



  PHY226 

 Partial differential equations, 3D coordinate systems and Spherical harmonics - Page 21 of 24 

  

! 

dP =
1
"a0

3 e#2r a0 4"r 2dr  

If we integrate over all space between    

! 

0 " r " #  we can show that the total probability is 1. 

  

! 

P =
1
"a0

3 e#2r a0

0

$

% 4"r 2dr =
4r 2

a0
3 e#2r a0

0

$

% dr =
4
a0
3 e#2r a0 #a0r

2

2
#

a0
2r
2
#

a0
3

4
& 

' 
( 

) 

* 
+ 

, 

- 
. 

/ 

0 
1 
0

$

=1. 

 
It would be very interesting to plot the full 3D probability density distributions for each combination of 
quantum states. Unfortunately, distributions for non-spherically symmetric solutions (i.e. p and d states) 
would be a function of θ and φ as well as of radius r making them exceedingly difficult to plot. 
If instead we were to plot only the probability density functions for spherically symmetric solutions (i.e. s 
quantum states) for each quantum state n we would find the following distributions corresponding to the 
EPCs shown earlier for hydrogen.  

      
From Hyperphysics website:  http://hyperphysics.phy-astr.gsu.edu/Hbase/hydwf.html#c1 
 

The radial probability density distributions for other quantum states can be found at the above website. 
We must remember that these plots are 3 dimensional in so far as they describe the probability that an 
electron may be found at a specific location within a 3 dimensional spherical potential well.  
The 3D representation of the 3d orbital shown as an EPCs for hydrogen earlier would look like….. 

 
This figure shows the various geometric configurations of 
the 3d orbitals in 3 dimensions. 
 

http://winter.group.shef.ac.uk/orbitron/AOs/3d/index.html 
 

 
 

 
Spherical Harmonics 

If, as we have done, we define the solution of a PDE expressed in spherical polar coordinates as 
      

! 

"(r,#,$) = R(r)P(#)F($)  then we can say that the solution is comprised of a radially dependent function 
)(rR  and two angular dependent terms )()( !" FP  which can be grouped together to form specific 

spherical harmonic solutions       

! 

Yl
m(",#).  Formally the spherical harmonics       

! 

Yl
m(",#) are the angular portion 

of the solution to Laplace's equation in spherical coordinates derived in the appendix.       

! 

Yl
m(",#) are found 
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in the solution of any PDE which contains no explicit angular dependence. The derivation of their 
properties is beyond the scope of this course. As stated earlier, l is a positive integer, m is a positive or 
negative integer and |m| ≤ l. This means that for a given l, there are 2l+1 allowed values of m:  m = 
0, 1, 2,.. l± ± ± . Hence there are 2l + 1 different functions       

! 

Yl
m(",#) for each value of l. The spherical 

harmonics       

! 

Yl
m(",#) are listed in the appendix and can be directly compared with the )(!P  and )(!F  

solutions for the wave function describing the electron orbitals of the hydrogen atom. 
Spherical harmonics are useful in an enormous range of applications, not just the solving of PDEs. It 
means a complicated function of θ and φ can be parameterised in terms of a set of solutions. The different 
harmonics can often be related to different physical phenomena or characteristics (e.g. in electrostatics, 
the potential due to a monopole, dipole, quadrupole, etc.). The shape of the earth (nearly but not exactly 
spherical), anisotropic potential variation, and the shape of a nucleus are just a few examples of non-
spherical functions which it can be helpful to express as a sum over spherical harmonics.  
 
Summary 

1. Similarly to the solution in 1D and 3D Cartesian coordinates, the Laplace equation, wave 
equation, diffusion equation and Schrödinger equation (for a central potential) can be solved in 
spherical polar coordinates by separation of the variables. 

2. In all cases, the solutions are all of the form       

! 

T (t)Rl(r)Yl
m(",#). The functions T(t) and  Rl(r) 

depend on the equation being solved, but for all the equations the angular dependence is given by 
the spherical harmonics       

! 

Yl
m(",#). 

3. The functional form of the spherical harmonics can be looked up in a table when required.  
4. In spherical harmonics l is a positive integer, m may be positive or negative, and |m| ≤ l so there 

are 2l+1 different       

! 

Yl
m(",#) for each value of l. 

This mathematics underlies not only the whole of atomic and nuclear physics but also many other 
applications including electrostatics, electromagnetic radiation, tides, solar oscillations, and many other 
problems. Next semester in atomic physics you will cover in more detail the radial spherical polar 
solutions of the Schrödinger equation for the hydrogen atom.  

 
Appendix 
To demonstrate a solution of a PDE in 3D using spherical polar coordinates we will consider the Laplace 
equation, although the procedure is the same for other more complicated PDEs. 
 
The Laplace Equation, ∇2V = 0. 
As stated before, the Laplace equation in spherical polar coordinates is written:  

 
      

! 

"2V (r,#,$) =
1
r 2

%
%r

r 2 %V (r,#,$ )
%r

& 

' 
( 

) 

* 
+ +

1
r 2 sin#

%
%#

sin# %V (r,#,$)
%#

& 

' 
( 

) 

* 
+ +

1
r 2 sin2#

%2V (r,#,$)
%$ 2

= 0. 

 
Let us look for solutions of the form       

! 

V (r,",#) = R(r)P(")F(#). 

Substituting this into the PDE gives: 

      

! 

1
r 2

d
dr

r 2
d R(r)P(" )F(#)[ ]

dr

$ 

% 
& & 

' 

( 
) ) +

1
r 2 sin"

d
d"

sin"
d R(r )P(")F(#)[ ]

d"

$ 

% 
& & 

' 

( 
) ) +

1
r 2 sin2"

d 2 R(r)P(" )F(#)[ ]
d# 2

= 0 , 

then multiplying both sides by  
    

! 

1
R(r)P(")F(#)

 in order to separate variables gives:  

 
    

! 

1
R(r)

1
r 2

d
dr

r 2 dR(r)
dr

" 

# 
$ 

% 

& 
' +

1
P(()

1
r 2 sin(

d
d(

sin( dP(()
d(

" 

# 
$ 

% 

& 
' +

1
F())

1
r 2 sin2(

d 2F())
d) 2

= 0. 
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Multiplying both sides by r2sin2θ gives: 

  0)(
)(

1)(sin
)(

1sin)(
)(

1sin 2

2
22 =+!

"

#
$
%

&+!
"

#
$
%

&
'
'

'(
(

(
((

((
d
Fd

Fd
dP

d
d

Pdr
rdRr

dr
d

rR
. 

The first term on the left involves both r and θ so we have not yet fully separated the variables. However 
φ is involved only in the last term on the LHS. So we can say that for the equation to be true for all r, θ 
and φ, the last term must equal a constant. But should it be positive or negative? 

The potential must be single valued meaning that at a given point in space it must have just one value. 
Note that in spherical polar coordinates, the points (r, θ, φ) and (r, θ, φ + 2π) are the same point and so we 
must also have F(φ) =  F(φ + 2π). This means we need harmonic solutions, and thus a negative constant.  

We choose  
    

! 

1
F(")

d 2F(")
d" 2

= #m2    where m is an integer, giving  F(φ) ~ 
    

! 

sin m"
cosm"

# 
$ 
% 

& 
' 
( 

 or  
  

! 

eim"

e# im"

$ 
% 
& 

' 
( 
) 

.   

Usually the form  F(φ) = eim
φ  is used. 

 

And we need periodicity of 2π,  i.e. we need  sin(mφ) = sin(mφ + 2mπ), etc. – which is true if and only if 
m is integer. 
 

Replacing the φ  term with  –m2 , the equation above becomes  

  
    

! 

sin2"
1

R(r)
d
dr

r 2 dR(r)
dr

# 

$ 
% 

& 

' 
( + sin" 1

P(")
d
d"

sin" dP(")
d"

# 

$ 
% 

& 

' 
( )m2 = 0 . 

Dividing both sides by !2sin  gives: 

  0
sin

)(sin
sin
1

)(
1)(

)(
1

2

2
2 =!"

#

$
%
&

'+"
#

$
%
&

'
((

(
(

(((
m

d
dP

d
d

Pdr
rdRr

dr
d

rR
. 

Now the first term involves only r and the next two terms only involve θ.  So to be true for all r and θ, the 
first term must equal a constant. If we call the constant B, then we get the following ODEs:   
   

    

! 

1
R(r)

d
dr

r 2 dR(r)
dr

" 

# 
$ 

% 

& 
' = B       giving        

    

! 

d
dr

r 2 dR(r)
dr

" 

# 
$ 

% 

& 
' = BR(r)  , 

and also 

    

! 

1
P(")

1
sin"

d
d"

sin" dP(")
d"

# 

$ 
% 

& 

' 
( )

m2

sin2"
= B    giving   

      

! 

1
sin"

d
d"

sin" dP(")
d"

# 

$ 
% 

& 

' 
( )

m2

sin2"
P(") ) BP(") = 0  . 

 

We are not going to solve the equation in θ ! It is an equation which has been studied by mathematicians 
and we are simply going to state its solutions!   
The solutions are found to diverge unless  B = − l (l+1) ,  where  l  is a positive integer and   

! 

l " m .   

Taking  B = − l (l+1)   the solutions P(θ) are real functions known as the associated Legendre functions, 
normally denoted by    

! 

Pl
m(cos") . Note that the functions depend on both l and m.  

 

We have      

! 

P(") = Pl
m(cos")  and  F(φ) ~ eim

φ. So we can write       

! 

P(")F(#) = Yl
m(",#) = cl,mPl

m(cos")eim# . 
The functions ),( !"m

lY  are known as the spherical harmonics.  
The coefficients are just normalization constants. 
Then the solutions to our equation are     

! 

V (r) = R(r) Yl
m(" ,#). 
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A table of the first few spherical harmonics ),( !"m
lY . 

 

l m       

! 

Yl
m(",#) Atomic 

orbital 

0 0 
      

! 

Y0
0(",#) =

1
4$

 s 

1 
0 

 
1±  

      

! 

Y1
0(",#) =

3
4$

cos"  

        

! 

Y1
±1(",#) = !

3
8$

sin" e± i#  
p 

2 

0 
 
1±  
 
2±  

      

! 

Y2
0(",#) =

5
16$

 3cos2" %1( ) 

        

! 

Y2
±1(",#) = !

5
24$

3sin" cos" e±i#  

        

! 

Y2
±1(",#) = !

5
96$

3sin2" e±2i#  

d 

3 

0 
 
 
1±  
 
 
2±  
 
 
3±  

      

! 

Y3
0(",#) =

7
16$

 5cos3" % 3cos"( )  

        

! 

Y3
±1(",#) = !

21
64$

sin" 5cos2" %1( ) e±i#

        

! 

Y3
±2(",#) = !

105
32$

sin2" cos2" e±2i#  

        

! 

Y3
±3(",#) = !

35
64$

sin3" e±3i#  

f 

 
 
 
 


