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1 Energy

In discussing energy in a relativistic course, we start by consid-
ering the behaviour of energy in the three regimes we worked
with last time. In the first regime, the particle velocity v is
much less than c, or more precisely β < 0.3. In this regime, the
rest energy ER that the particle has by virtue of its non–zero
rest mass is much greater than the kinetic energy T which it
has by virtue of its kinetic energy. The rest energy is given by
Einstein’s famous equation,

ER = m0c
2 (1)

So, here is an example. An electron has a rest mass of 0.511 MeV/c2.
What is it’s rest energy?.

The important thing here is to realise that there is no need to
insert a factor of (3×108)2 to convert from rest mass in MeV/c2

to rest energy in MeV. The units are such that 0.511 is already
an energy in MeV, and to get to a mass you would need to divide
by c2, so the rest mass is (0.511 MeV)/c2, and all that is left to
do is remove the brackets. If you divide by 9× 1016 the answer
is indeed a mass, but the units are eV m−2s2, and I’m sure you
will appreciate why these units are horrible. Enough said about
that.

Now, what about kinetic energy? In the non–relativistic regime
β < 0.3, the kinetic energy is significantly smaller than the rest
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energy. Suppose we are right at the edge of this regime, so
v = 0.3c, or β = 0.3. What then is the kinetic energy? Well,
the exact expression for kinetic energy is

T = (γ − 1)m0c
2. (2)

But, since we are in the non–relativistic limit, we may also ex-
pect that

T ' 1

2
m0v

2. (3)

Let us first show that at β = 0.3, the error in using the latter
expression instead of the former one is pretty small. Let us write
the exact expression of Equation 2 in terms of β.

T =

(
1√

1− β2
− 1

)
m0c

2. (4)

Where β < 0.3, which is always true in the non–relativistic
regime, we can expand 1/(

√
1− β2) using the binomial theorem,

1√
1−β2

= (1− β2)
− 1

2

= 1 +
(
−1

2

)
(−β2) + 1

2!

(
−1

2

) (
−3

2

)
(−β2)2 + · · · .

' 1 + β2

2
+ 3β4

8
.

(5)
Therefore, we can write

γ − 1 =

(
1√

1− β2
− 1

)
' β2

2
+

3β4

8
. (6)

Putting the m0c
2 back again, we get

T = (γ − 1)m0c
2 ' 1

2
(m0c

2)β2 +
3

8
m0c

2β4. (7)

Putting in β = v/c we get

T ' 1
2
m0c

2
(
v2

c2

)
+ 3

8
m0c

2
(
v2

c2

)
β2.

' 1
2
m0v

2 + 3
8
m0v

2β2.
(8)

The second term on the right represents a the leading correction
term compared to just using 1/2m0v

2 for the kinetic energy.
There are additional errors contributed by higher order terms in
the binomial expansion, but these errors are order β4 and above,
and are therefore much smaller than the leading term for β <
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0.3. The fractional error σT/T by just assuming T = 1/2m0v
2

is the ratio of the leading order error to 1
2
m0v

2, or

σT
T

=
3
8
m0v

2β2

1
2
m0v2

=
3β2

4
. (9)

At β = 0.3, the largest velocity still in the non-relativistic
regime, σT/T is just under 7%. This is not an insignificant
error, but it’s acceptable to me for this course. If β is larger
than 0.3, σT/T starts to become too big to be acceptable, and
you must use a more precise, relativistic expression for T .

One nice outcome of this analysis is that you can see from it
how to get the kinetic energy of a particle whose rest mass and
β you know, without ever converting back to silly SI units. Con-
sider Equation 8, and take only the leading order term. This is
1/2m0v

2 but written in terms of quantities we know in eV units.
So, suppose we have a proton of mass 938 MeV/c2 moving at 0.3
of the speed of light. Then ER = m0c

2 = 938 MeV and β = 0.3
so

T ' 1

2
m0v

2 =
1

2
(m0c

2)β2 =
1

2
ERβ

2 = 0.5×938[MeV]×0.32 = 282 MeV.

(10)
The error in this estimate of the kinetic energy is about 7%. Use
of equation 2 would yield the exact kinetic energy; use of the
approximate expression of Equation 8 would yield an error much
smaller than 7%. Notice that the kinetic energy is significantly
smaller than ER = 938 MeV, which is what you expect for a
particle in the non-relativistic regime.

Another nice thing about this method is that the only dimen-
sionful quantities in the formula are energies, so in fact the en-
ergy can be in any units you like. For example, if an object has
a energy at rest of 0.9 horsepower-hours (an old unit of energy -
1 joule is 3.8× 10−7 horsepower-hours), and its velocity is 0.1c,
then its kinetic energy is 0.5 × 0.9[horsepower− hours] × 0.12,
which is 0.0045 horsepower-hours. No unit conversions were re-
quired!

In both the mildly relativistic and extremely relativistic regimes,
the kinetic energy is compatible with or larger than the rest
energy. In these regimes, the kinetic energy must be calculated
using Equation 2. So, suppose β = 0.5, and we have a particle of
rest mass 135 MeV/c2. What is its total energy and what is its
kinetic energy? First, β = 0.5 puts us in the mildly relativistic
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regime. So to calculate γ we use γ = 1/
√

(1− 0.52) = 1/
√

(1−
0.25) = 1/

√
(3/4) = 2/

√
3 = 1.15. Therefore E = 1.15m0c

2 =
1.15 × 135 MeV = 155 MeV. The kinetic energy is T = (γ −
1)m0c

2 = γm0c
2 − m0c

2 = E − m0c
2 = (155 − 135) MeV =

20 MeV. So in this case the kinetic energy is 15% of the total
energy.

Finally, let’s do a highly relativistic one. Suppose we have a pro-
ton having γ = 90. What is its total and kinetic energy? Total
energy is just γ times rest energy, or 90× 938MeV = 84.4 GeV.
To get the kinetic energy, just subtract the rest energy (938 MeV)
from the total energy, but this makes a very small difference, just
over 1%. For a highly relativistic particle, the kinetic energy is
almost exactly equal to the total energy, with the discrepancy
equal to the rest energy. In other words, highly relativistic par-
ticles behave almost exactly like photons. The energy stored
in their rest mass is almost negligible. This is one reason why
theoretical physicists hope to unify physics at high energies; it
doesn’t matter ‘up there’ that all the particles have different rest
masses! Those parameters simply aren’t important for dynamics
at sufficiently high energy.

2 Relativistic Dynamics

In relativity it is very rare indeed to have any static potentials,
such as a gravitational potential or an electrostatic potential
to worry about. The reason is that potentials are not actually
consistent with Einstein’s postulates. To see why this is, recall
that the gravitational force between two bodies has magnitude
GM1M2/r

2 where G is Newton’s gravitational constant, M1 and
M2 are the masses of the bodies and r is their separation. Now
imagine that r is, say 30 kpc, roughly the dimension of the lu-
minous component of our galaxy. Now let one of the bodies
disappear suddenly. If Newton’s law of gravitation is correct,
the force on the other mass disappears immediately! This is
inconsistent with Einstein’s basic idea that nothing can travel
faster than c, since if Newton’s law of gravitation is right, then
the gravitational field can transmit information from place to
place instantaneously. So, in relativity, static fields are replaced
by propagating particles which carry the forces from place to
place, never having a measured velocity faster than c. At least,
this is how it looks from an experimental perspective. Some of
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you may have read recently about an experiment called OPERA
in which neutrinos generated at CERN were fired through the
Earth to a detector in Gran Sasso (an underground lab), and
there were reports that these neutrinos appear to travel faster
than light! This result is highly controversial, and until it is
verified by another group, we will assume that it will turn out
to be a mistake. If it IS verified by others, the whole theory of
relativity will be in need of modification to account for the new
affect. That’s science.

Because there are no potentials, there are no conventional forces
either. Instead, bodies propagate from place to place in straight
lines until they undergo interactions, which we may consider to
be approximately point scatters. Or, sometimes, a single body
may break up or decay into two, or perhaps many, bodies. A
great proportion of problems in special relativity has to do with
studying the dynamics of collisions and decays. If you know the
initial state of a system - say you have some particle at rest with
respect to an observer O, and then something happens, say the
particle decays into two bodies, what can you say about the final
state of the system, from the perspective of observer O?

To solve problems like this in pre-relativistic physics, one of
the key tools we have is conservation of energy. In classical
mechanics, energy that be converted into forms that we can’t
measure. For example, two sticky balls can collide and adhere
to each other. In this collision, the total kinetic energy of the
balls after the collision may be less than the sum of their kinetic
energies before the collision. That’s because after the collision,
the process of sticking them together heats the balls up, so some
of the kinetic energy before the collision is converted into heat
after. We say the collision was inelastic.

In relativistic dynamics, we still talk about elastic and inelas-
tic collisions. An elastic collision is where you have the same
particles before the collision as you have after it. Two electrons
scattering off each other is an example of an elastic collision.
Two electrons before, two electrons afterwards. Inelastic colli-
sions are processes where the particle species before the collision
and after the collision are different. For example, if you collide a
high energy electron with a high energy positron, you may cre-
ate a muon and an antimuon in final state. This is an example
of inelastic scattering. Another example of inelastic scattering
a bit more like the sticky ball problem is neutron capture by
boron. A nucleus of 10B can absorb a neutron and break up to
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yield a nucleus of 7Li, an α–particle, and a γ–ray photon. Again,
the particles in the initial and final states are different, so this
is inelastic scattering. This process is very important in nuclear
reactors, where control rods made of 10B are lowered into the
reactor core to absorb some of the neutrons liberated in nuclear
fission, thereby reducing the reaction rate and cooling the core.

One final note about energy. What about massless particles?
They are special, because they travel at the speed of light, there-
fore to any observer they have infinite γ. However, this isn’t a
problem. The reason is, we know they are massless. There is
no point in breaking their total energy into two components,
kinetic and mass energy. They don’t have any mass energy, be-
cause mγ = 0. Therefore, for a photon T = E. The formula for
kinetic energy in terms of m0c

2 used for massive particles is use-
less here because m0 = 0. If this is puzzling, think of a massless
particle as a limit of a very light particle. For a given energy,
as particles with that energy get lighter and lighter, their rest
energies m0c

2 get smaller and smaller, and their gamma factors
get bigger and bigger, such that γm0c

2 is fixed. So you can have
γ → ∞ at the same time as m0 → 0, and the product of these
two quantities can remain finite.

3 Energy Conservation in Special Rel-

ativity

Enough discussion! The key question is, can we use energy con-
servation to solve problems in special relativity? Yes, but with
one important proviso. Energy is only conserved if it is the same
observer O measuring the energy of all the particles before the
dynamic event (collision or decay), and measuring the energies
of all the final state particles after the event. The sum of all the
energies before the event is the same as the sum of all the en-
ergies after the event, as long as the same observer O measures
the energies in both cases.

So if we have, for example, a π0–meson at rest with respect
to some observer O (the mass of a π0–meson is 135 MeV/c2),
and this meson decays into two γ–rays (photons), what is the
total energy of the two γ–rays? Clearly the energy of the π0–
meson initially in the rest frame of O is 135 MeV, therefore the
sum of the energies of the two decay photons is also 135 MeV.
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Intuitively you would also guess that each of the photons wind
up with the same energy, so 77.5 MeV each, but there’s no way
of proving that without also knowing that momentum os also
a conserved quantity. We haven’t discussed momentum yet, so
let’s go on and do that now.

4 Momentum

The momentum of a particle in relativity is

~p = γm0~v. (11)

The high energy physics units for momentum are eV/c. This
means that ~pc has eV units. From Equation 11 we obtain an
expression for ~pc,

~pc = γm0~vc = γ m0c
2

(
~v

c

)
= βγm0c

2v̂, (12)

where v̂ is a unit vector in the direction of motion of the particle.
I emphasise, because sometimes it will matter, that as in pre-
relativistic classical mechanics, momentum is a vector quantity,
having three components which are often expressed in Cartesian
coordinates.

Let’s study momentum a little. Consider a proton having a total
energy of 941 MeV. What is its momentum? Firstly, recall that
the proton rest mass is 938 MeV, so that the kinetic energy is
only 3 MeV. Therefore we are in the almost completely non-
relativistic regime, and we may set γ = 1. In this regime, the
magnitude of the momentum is

pc = βγm0c
2 ' βm0c

2 = βER, (13)

so we need an expression for β. To get this, note that we are in
the low energy limit, so that the kinetic energy is approximately

T =
1

2
m0c

2β2 =
1

2
ERβ

2 (14)

so that
2TER = (ERβ)2 (15)

and therefore

pc ' βER =
√

2TER =
√

2× 3[MeV]× 938[MeV] = 75MeV.
(16)
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Therefore the momentum is p = 75 MeV/c. That’s it. Again,
no need to convert back to SI units, and the calculation is a lot
simpler, and your answer almost certainly more accurate, if you
don’t.

Next, let’s do a highly relativistic example. Suppose we have
a proton with a total energy of 90 GeV. What is it’s momen-
tum? First, find γ by noting that E = γER, therefore γ =
E/ER = 90, 000/938 = 95.9. This is much greater than 7, so
we are indeed in the highly relativistic regime, and β = 1. The
momentum-energy is

pc = βγm0c
2 ' γm0c

2 = ER (17)

So, in the high energy limit pc = 90 GeV, or p = 90 GeV/c. In
the high energy approximation, once again, particles behave as if
they were massless! They are photon-like. You may remember
that for a photon, the momentum and energy are related by
E = cp. This is an exact formula for a massless particle; it’s
also approximately true for any particle in the highly relativistic
regime.

Finally, time to do a mildly relativistic example. Suppose I have
a proton again, this time with a momentum of p = 0.8 GeV/c.
What is β? Since pc is of the same order as ER at 938 MeV, I’m
suspecting this is in the mildly relativistic regime, so I need the
full formula for momentum,

pc = βγm0c
2 (18)

Therefore βγ = (pc/ER) = 2000/938 = 2.13. We therefore have
to solve

2.13 = βγ =
β√

1− β2
. (19)

You can’t set either β or γ to 1, you just have to solve it. Square
both sides and rearrange to get (2.13)2 − (2.13)2β2 = β2, or
(2.13)2 = (1 + (2.13)2)β2, or β = 2.13/

√
1 + (2.13)2 = 0.9c. So

we are indeed in the mildly relativistic regime.

5 Momentum conservation

Like energy, total momentum as measured by the same observer
O before and after an interaction is the same. Unlike energy,
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however, momentum is a vector. The sum of the momentum
vectors of all the particles before and after the collision will be
the same, as long as all those momentum vectors are determined
by the same observer, non-accelerating throughout.

Let us see how conservation of momentum helps us with our π0–
meson decay. Consider an observer O at rest with respect to the
π0–meson before it decays. The momentum is zero. Therefore,
the sum of the momenta of the two photons after the decay
must be zero. If they have equal and opposite momenta, then
their energies are equal, because E = c|~p| for a photon, and
the momenta differ only by a sign. Therefore, the two decay
photons have equal energies, 77.5 MeV each, and are emitted
back-to-back in the rest frame of observer O.

What about some other observer, moving with respect to the π0–
meson? Well, to these observers the energy before the collision
is greater than the rest energy of the π0–meson, because it’s
moving. And, the momentum of the π0–meson is not zero, again
because it’s moving. So, both the initial conditions and the
outcome look different to an observer with respect to whom the
initial π0–meson is moving. More about this next time.
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