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1 Overview of this course

This year is the first that I am starting to teach special relativity
in year 2 having already taught it to the same group during year
1. The notes that I gave out last year for PHY101 will be useful
to you. They are the same notes that are still on the PHY101
web site ( under MOLE ) this year. Some slightly more advanced
notes, but with a very large overlap with last years PHY101
course, are also available on the PHY206 web site. These also
have not changed since last year.

However, it would be silly to teach the same course again, since
it has such a large overlap with the PHY101 lectures you have
already had. So what I intend to do instead is to re-teach some
of the techniques necessary to do the types of problems most
relevant to further work with special relativity, and to introduce
a few new concepts. The emphasis will be on the former. Expe-
rience with examining PHY101 and PHY206 over the past two
years has taught me that students tend to ignore my advice on
how best to get the right answers to calculations, preferring in-
stead a set of ‘A level’ style methods which I know don’t work
because I observer their success rate on your exam scripts! Here
are some of these ‘dodgy’ and ‘dubious’ methods.

• Heinous crime against physics number 1 The use
of inappropriate non-relativistic formulae for relativistic
problems. Assuming that kinetic energy is T = 1/2mv2
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or momentum is p = mv. These expressions are approxi-
mations which are only useful for particles moving much
slower than light. You’ve come to rely on them because
most of the particles you have met are slow moving, but
don’t think they are universal and be particularly care-
ful to justify their use whenever you invoke them in this
course.

• Heinous crime against physics number 2 Using calcu-
lators to evaluate β given a value of γ and vice versa, when
the calculation is either extremely relativistic or almost
entirely non relativistic. This often fails because most
calculators have trouble evaluating things like 1 − 10−12,
and you yourselves have trouble entering expressions like
1-0.9999999823 into your calculator! Expressions like
this come up often if you don’t know how to avoid them.

• Heinous crime against physics number 3 Failure to
make appropriate approximations, particularly failure to
recognise when one can set β or γ equal to 1 and consid-
erably simplify an expression.

• Heinous crime against physics number 4 Conversion
of energies in eV, MeV, or GeV, into joules (J), masses in
eV/c2, MeV/c2, GeV/c2 into kg, and momenta in eV/c,
MeV/c and GeV/c into kg m s−1, performance of relativis-
tic calculations in inappropriate SI units, then attempts to
convert the result back into electron volts. In over 50% of
cases, this results in the wrong answer, usually by one or
several factors of c, so the answer will be off by about 108,
1016, etc. And, the calculations in SI units are far longer
and therefore waste your precious time.

• Heinous crime against physics number 5 Confusion
between the different energies in physics, rest energy, ki-
netic energy, and total energy. Failure to appreciate the
differences between results that are general for all parti-
cles, those that apply only to non-relativistic particles (like
the kinetic energy of a particle that has v � c), and those
that apply only to very highly relativistic particles like
photons, such as energy E ' cp, where p is momentum.

• Heinous crime against physics number 6 Assum-
ing that all you need to know to do relativity problems
is Lorentz transformations of x and ct, Lorentz contrac-
tion, and time dilation. Most relativity calculations are
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concerned with energy and momentum, not position and
time. So if this is all you know, you will have trouble with
my problems.

In spite of my having gone on at great length in favour of you
all abandoning your lives of crime, many of you persisted in the
exam in some or all of the above destructive practices. One aim
of this course is to do enough problems, and to encourage you
also to do enough problems, to make all of you (hopefully) aware
of what I consider (based on my experience) good practice, and
frankly to get you all out of some of these bad habits.

Secondly, I will introduce some new material, mostly in the area
of four-vectors and Lorentz invariant quantities, that are of in-
terest to practitioners of special relativity, particularly those of
you who will end up working at particle beam accelerators such
as ATLAS. Hopefully this will be fun for people, and these are
powerful techniques which are standard tools in the field.

1.1 Assessment

As you know, this course is half of a 10 credit module, sharing
its module code with atomic physics. The overall assessment
of PHY206 is 70% exam-based, with the remaining 30% split
between 10% on each of two homeworks and 5% on each of two
problems classes. Stathes and I split this exactly 50/50, so that
half the exam is on relativity and half on atomic physics, we
set one homework each, and we usually split each of the two
problems classes into 50% atomic physics and 50% relativity.

Be warned that, given the nature of the taught material, I will
consider it entirely legitimate to give students zero who get the
wrong numerical answer because they tried to do the calculation
in SI units and did the conversions incorrectly. I do this not
out of malice, but because I genuinely consider that learning to
handle the new units is one of the main learning outcomes of the
course. I will give partial credit only where I consider that the
student has tried to perform the calculation using the methods
I am trying to teach you. I will of course give full credit to those
of you who get the correct answer, using any correct working in
any units, but those who choose to ignore my advice and persist
with SI units will, in my experience, get zero credit in more
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than 50% of cases, particularly on the exam. I will also award
no credit to a correct answer with no supporting calculations,
or calculations that are inconsistent with the answer.

2 Beta (β) and gamma (γ)

The critical questions to ask when figuring out whether you
need to tools of relativity are, firstly, what are the speeds v of
the particles concerned relative to c? And, secondly, even if the
particles are all moving with v � c, are the units employed
in the question such that we may still benefit from a special
relativistic approach to calculations? Because we are comparing
v to c so much, we define

β =
v

c
. (1)

The velocity v is therefore related to β by v = βc. If v ap-
proaches c then β approaches 1. β is exactly 1 only for massless
particles, though as we shall see there are a large class of prob-
lems where massive particles have so much energy that they have
β that is almost exactly 1, and in these situations it is often an
enormous simplfication to set β ∼ 1 for the purposes of doing
calculations. The other quantity that comes up a lot, related to
v or β is γ, which is defined as

γ =
1√

1− v2

c2

=
1√

1− β2
=

1√
(1 + β)(1− β)

. (2)

The last form of γ is often useful when you are trying to simplify
expressions with lots of βs and γs in them.

Because v is always between −c and c, γ is always between +1
(for v = 0) and +∞ (as v → c). In fact, we can easily plot γ as
a function of β, and this is what I have done below in Figure 1.

There are a few things that are worth noticing on this plot.
Firstly, when β < 0.3, γ is 1 to within 5%. Secondly, when
γ > 7, β is 1 to within 1%. I wish you to memorize these limits.
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Figure 1: A plot of γ vs. β.

2.1 The non-relativistic regime

With β < 0.3, the effects of special relativity, which are only
noticable when γ is significantly different than 1, are at the less
than 5% correction level. We will call this the non-relativistic
regime. This does not necessarily mean that it is best to convert
all quantities back into SI units and start using your old A level
‘skills’. There is a large class of problems, particulary α–decay
of nuclei, in which relativistic-style calculations using energies
in eV, etc, will get you to the right answer faster and with less
possibility for mistakes than plugging in to your calculator and
converting the mass of the alpha particle into kilograms, for
example. We’ll do plenty of examples of calculations with slow
moving alpha particles emitted by decaying nuclei where the eas-
iest way to figure out the dynamics is to approach the problem
using relativistic units and notation.

2.2 The mildly-relativisitic regime

This is a term I invented myself; don’t expect to see it in the
literature. This regime is characterised by β > 0.3 and less than
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0.99. In other words, the two boundaries of this regime are at
(β, γ) = (0.3, 1.05) and (β, γ) = (0.99, 7). For calculations, this
is the most difficult range of velocities, because you can neither
set β ∼ 1 or set γ ∼ 1. However, in this regime, you can freely
use the formula of Equation 2 to deduce γ from β and vice versa.

2.3 The ultra-relativistic regime

The final regime is characterised by particles having β > 0.99
and γ > 7. These particles are ultra-relativistic because the
large size of γ means that relativistic effects dominate. Also, the
velocity of such particles is approaching that of light. For ultra
relativistic particles, I will rarely ask you to compute the parti-
cles velocity. I’m not really interested in answers like 2.999453213× 108 m s−1.
I’m no better than you at counting the nines, and I have a hor-
ror of using so many significant figures. How often do you see c
quoted to this number of figures? It’s usually meaningless to do
so. Instead, I might often ask you by how much is a particles
velocity less than that of light. If you remember, in PHY101, we
worked out and exploited an expression for getting the deviation
from c. Let ε = c−v, and suppose we are in the ultra-relativistic
regime, where ε � c. Let us write down γ in terms of ε, as we
did last year, and recall what happens.

γ = 1q
1− v2

c2

= 1r
1− (c−ε)2

c2

= 1r
c2−(c−ε)2

c2

= c√
c2−(c2−2cε−ε2)

' c√
2cε

γ '
√

c
2ε

γ '
√

c
2(c−v) ,

(3)
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or
(c− v) = ε ' c

2γ2
. (4)

Because ε� c I have been able to neglect ε2 when it appears on
the fourth line of the algebra in Equation 3. These expressions
relating γ and the difference between the particle speed and that
of light, c − v, are only useful or correct in the ultrarelativistic
regime. Do not try and use them for particles having γ < 7 or
β < 0.99. They will give incorrect results.

Figure 2 is a cartoon drawing on which I have overlaid a rough
guide to the different regimes on the previous graph of γ vs. β. I
hope it will be useful in helping you decide which approximations
it is OK to make.

3 Examples of conversion between β

and γ

A particle is moving at v = 0.6c with respect to some observer
O. What regime are we in, what are β and γ of the rest frame
of this particle with respect to the observer O?

Solution. β is v/c, or 0.6. Referring to our cartoon drawing,
we are in the mildly relativistic regime. And in this regime we
just plug in to γ = 1/

√
1− β2 to obtain a β of 1/

√
1− 0.36 =

1/
√

0.64 = 1/0.8 = 5/4. We check that γ is consistent with the
mildly relativistic regime, which it is, because it’s greater than
1.05 and less than 7.

A particle is moving at v = 0.002c with respect to some observer
O. What regime are we in, what are β and γ of the rest frame
of this particle with respect to observer O?

Solution. β is 0.002. This is the non relativistic regime. To all
intents and purposes, γ = 1. You could figure out exactly what
it is using a binomial expansion, and the answer you would get
would be 1 plus a tiny quantity, of no real interest. Just say
γ = 1 and go on to the next bit.

A particle is moving with a γ factor of 10 with respect to some
observer O. What is β? How much slower is it moving than c,
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0.3 < β < 0.99
1.05 < γ < 7
γ = 1√

1−β2

ULTRA
RELATI–
VISTIC
β > 0.99
γ > 7
γ '

√
c

2(c−v)

γ ' 1

β ' 1

NON RELATIVISTIC
β < 0.3

MILDLY RELATIVISTIC

γ < 1.05

Figure 2: A cartoon drawing of the ranges of β and γ asso-
ciated with the non-relativistic, mildly-relativistic, and ultra-
relativistic regimes.
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in m s−1, with respect to observer O?

Solution. We’re in the highly relativistic regime because γ > 7.
First, let’s do this the hard way and see what a pain it is. If
γ = 10, then

√
1− β2 = 0.1. Therefore 1 − v2/c2 = 0.01, so

that v2/c2 = 0.99, so that v/c = 0.99498. This means that
c − v = c(1 − β) = c(1 − 0.99498) = 1.5 × 106 m s−1. Now
let’s do this the easy way. Using Equation 4, we can write
c− v ' c/2γ2 = c/200 = 1.5× 106 m s−1. No nines to write out,
and just as accurate of an answer. In fact, more accurate, and
it’s far less likely that you’ll make a mistake.

A particle is moving with γ = 1012 with respect to some observer
O. Repeat the above question.

Solution. We’re in the highly relativistic regime because γ > 7.
Let’s do this the hard way and see that it’s basically impossible.
If γ = 1012 then

√
1− β2 = 10−12, so that 1 − v2/c2 = 10−24,

or v2/c2 = 1 − 10−24. If you plug this into your calculator,
you’ll conclude, wrongly, that v = c. Instead of doing this, use
Equation 4 again, to write c−v = c/2γ2 = 3×108 m s−1/2×1024,
or c− v = 1.5× 10−16 m s−1. This is the difference between the
speed of this particle and the speed of light in the reference
frame of observer O.

4 Examples of deducing β and γ from

various quantities with the dimen-

sions of energy

Frequently in relativity problems, you are given some combina-
tion of total energy, kinetic energy, and mass of a particle at the
beginning. From any two of these numbers you can work out γ.
Once you have γ, you can figure out what regime you are in and
make appropriate approximations to simplify the work. How-
ever, if you get γ wrong, you are completely sunk. So, please,
practice working out γ. Here are some examples.

A proton (rest mass 938 MeV/c2) has a total energy of 20 GeV
in the coordinate system of some observer O. What is γ for the
coordinate system at rest with respect to the proton?
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Solution. In this problem, we need to recall the relativistic ex-
pression for the total energy E and rest energy ER of a particle.
They are:

E = γm0c
2 (5)

ER = m0c
2 (6)

If the rest mass is m0 = 938 MeV/c2, then the rest energy is
ER = m0c

2 = 938 MeV. That’s it! There is NO NEED to
actually multiply by 3×108, because multiplying by c is accom-
plished by crossing out the /c. The number stays the same, just
the units change. I wish I had a quid for every student who
forgets this and actually gets their calculator out to multiply by
c when converting from rest mass in eV/c to rest energy in eV.
NO! Don’t do that! Just let the units take care of it.

Next, we combine the equations for rest mass and rest energy
to obtain E = γER. This means that γ is just the ratio of the
total energy to the rest energy, or equivalently the total energy
in eV divided by the rest mass in eV/c2. So in this problem,
γ = 20, 000/938 = 21.3, so we are in the highly relativistic
regime, and β ' 1. It’s that easy!

A proton has a kinetic energy of 3GeV in the coordinate system
of some observer O. What is γ, and what regime are we in?

Solution. The relativistic formula for the kinetic energy T is

T = (γ − 1)mc2. (7)

The proof of this is easy. There are only two forms of energy that
a particle can actually have in special relativity problems, mass-
energy and kinetic energy. Therefore, they have to add to the
total energy. This leads to T + m0c

2 = γm0c
2, and rearranging

we obtain Equation 7. That’s it. Combining Equation 7 with
Equation 6 we get

T = (γ − 1)ER. (8)
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Therefore,

γ = 1 +
T

ER
= 1 +

T

m0c2
. (9)

In this problem, γ = 1 + 3/0.938 = 4.2. That’s it.

Finally, we might also be given the total energy and the kinetic
energy, but not the rest energy. In this case, you could just
subtract E−T to obtain m0c

2, and substitute E and ER = m0c
2

into γ = E/ER. This is the same as writing γ = E/(E−T ). So
we now have lots of ways of obtaining γ from various energies.

γ =
E

m0c2
= 1 +

T

m0c2
=

E

E − T
. (10)

We’ll stop here for now. Next time we’ll go on to discuss the
relationship between energy, momentum and mass, and do more
problems in that area.
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