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1 Review of Lecture 4

In lecture 4 we derived the Lorentz transformations relating
the coordinates of the same event recorded by two different in-
ertial (non–accelerating) observers referred to as ‘primed’ and
‘unprimed’. Since both are inertial, their relative velocity is
constant, and these transformations assumed that the primed
observer is moving in the direction of the positive x axis with
respect to the unprimed observer.

t′ = γ
(
t− vx

c2

)
,

x′ = γ (x− vt) ,
y′ = y,
z′ = z.

(1)

In terms of β = v/c the Lorentz transformations can also be
written

ct′ = γ (ct− βx) ,
x′ = γ (x− βct) ,
y′ = y,
z′ = z.

(2)

These transforms will be used in the next couple of lectures to
explore the properties of world lines on spacetime diagrams in
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special relativity and to derive a couple of important kinematic
results - the relativistic formula for the addition of two velocities
and the relativistic formula for doppler shift.

2 Relativistic addition of velocities

Recall that in Lecture 2, we considered the example of a flash-
light shone forwards out of the front of a moving train. Einstein’s
second special relativity postulate implies that both an observer
on the train stationary with respect to the flashlight, and an
observer positioned on a bridge with respect to which the train
is moving at constant velocity, will measure the same speed, c,
for the light from the flashlight.

In this lecture we will show that this statement follows from
the Lorentz transformations. We start by considering a more
general case, the case where an observer stationary with respect
to the moving train train causes an object to move at a velocity
u′ in the direction of the forward motion of the train. The train
itself is moving at a constant velocity v, and as before we define
the direction of this motion to be the x axis. A second observer
stationary with respect to a bridge over the railway line measures
the velocity of the object moving on the train and gets a result
u. In pre–relativistic physics we would expect that u = v + u′,
but we see that this cannot be the case in special relativity, since
if we replace u′ by c in this formula, then u > c, in violation of
Einstein’s second special relativistic postulate.

Consider Figure 2, showing a segment of the world line of the
object moving on the train. We agree that at time t = t′ = 0, the
rolling object and the origin of the primed coordinate system are
in spatial coincidence with the origin of the unprimed coordinate
system, so that at t = t′ = 0, we also have x = x′ = 0, where
x represents the position of the rolling object. Some time later,
this world line passes through the point (ct′A, x

′
A). Knowing

these two points through which the world line passes, we may
write the speed of the moving object u′ as

u′ =
x′A
t′A
. (3)
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Figure 1: An object travelling at some velocity u′ in the refer-
ence frame of an observer who happens to be on a train moving
at velocity v with respect to a second observer. All observers
are inertial.

We now use the Lorentz transformations to find the coordinates
of the point A on the world line of the moving object in the
unprimed frame. We get

tA = γ
(
t′A +

v x′
A

c2

)
,

xA = γ (x′A + v t′A) .
(4)

Next we write x′A = u′t′A in these equations and factor out the
common γ t′A,

tA = γ t′A
(
1 + u′ v

c2

)
,

xA = γ t′A (u′ + v) .
(5)

Dividing the lower of these two equations by the upper yields a
formula for u, the velocity of the moving object on the train as
measured by an observer on the bridge.

u =
xA

tA
=

γ t′A (u′ + v)

γ t′A
(
1 + v u′

c2

) . (6)

Cancelling the common factor of γ t′A yields our final result for
the velocity of the moving object as measured on the bridge.
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u =
u′ + v

1 + u′ v
c2

. (7)

Now let us see when the moving object on the train is a light
pulse. This means that u′ = c. Substituting in to Equation 7,
we obtain

u = c+v
1+ vc

c2

= c+v
1+ v

c

= c+v

( c+v
c )

= c,

(8)

so that to the observer on the bridge, the velocity of photons
emitted by a source on the train is c, just as it is for an observer
stationary with respect to the light source.

So is the light emitted by the flashlight on the train the same in
all respects to both the train and the bridge observer? No, in fact
the light measured by the two observers will in fact have different
frequencies, wavelengths, and energies per photon in their two
frames of reference, due to the Doppler effect. You have met
the Doppler effect before in the context of sound waves emitted
by moving sources. The simplest example is the sound made
by sirens on moving ambulances which seems to have a higher
pitch as the ambulance approaches and a lower pitch as the
ambulance moves away. We will learn about the Doppler effect
in special relativity very soon. For now, note only that unlike the
doppler shift of sound waves from relatively slow ambulances,
relativistic Doppler shift occurs even when the oscillator has
motion only transverse to the line of sight between the observer
and the moving source. But before considering the Doppler
effect, let us return to spacetime diagrams and world lines now
that we have the Lorentz transformations at our disposal.

3 Review of pre-relativity spacetime

diagrams

Recall from the first lecture that we can plot events in spacetime
on a diagram of time versus position. Considering again the
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Figure 2: Overlay of coordinate systems of two observers pre-
dicted by the pre-relativistic Galilean transformations. Notice
that lines of equal time are coincident between the two coor-
dinate systems since clocks run at a rate independent of their
speed in pre-relativity physics.

coffee cup on the train, two observers called the primed (on
the train) and unprimed (on the bridge) observers both view
the coffee cup. In the inertial coordinate system of the bridge
observer, the sequence of events making up the world line of the
coffee cup forms a diagonal line with the slope of the line equal
to 1/v, where v is the velocity of the train. In the world line of
the observer on the train, the coffee cup’s world line follows the
line x′ = 0, since the coffee cup stays fixed at the origin of the
primed coordinate system

This can be made consistent by overlaying lines of constant t′

and x′ in a spacetime diagram of the world line of the coffee
cup in the coordinate system of the unprimed observer. This
is illustrated in Figure ** . The line x′ = 0 follows a diagonal
line of gradient 1/v, where v is the velocity of the train. The
world line of the coffee cup follows this line; this is not surprising
since in the primed coordinate system, the coffee cup is at the
origin at all times. The important thing to note here is that the
method for finding the t′ and x′ axes was to use the Galilean
transformations and substitute x′ = 0 and t′ = 0, respectively.
When we repeat this trick with the Lorentz transformations, we
will find out how to overlay the coordinate axes of the primed
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observer on top of spacetime diagrams of the unprimed observer
in special relativity.

4 The Lorentz version of the axes of

Spacetime diagrams

First, as mentioned in lecture 4, note that if x and t are in SI
units, ie, 1 on the x–axis means 1 m, and 1 on the time axis
means 1 s, then the world line of a light pulse is phenomenally
close to horizontal, since in 1 s a light pulse travels 3× 108 m. If
we are considering relativistic effects, having light pulse world
lines so close to flat makes it hard to develop an intuition for the
consequences of the time it takes for light to travel from place
to place. And another thing - the dimensions (units) of the time
axis and the x–axis are different.

To fix both of these problems, we make the vertical axis equal
to the time coordinate times c, the speed of light. So relativis-
tic spacetime diagrams are plots of ct versus x. What does the
world line of a light pulse look like in these coordinates? Con-
sider a light pulse that starts out at time zero at the origin and
subsequently propagates in the direction of increasing x. In a
time t it travels a distance ct, so that for any point on its trajec-
tory after time zero, x = ct. On a graph of ct vs x, therefore, the
world line of this light pulse is a straight line through the origin
with gradient 1; compare ct = x with the general equation of
a straight line Y = MX + C, and you get Y → ct, X → x,
C → 0, M → 1. Therefore the gradient of the line is 1, and its
ct (or Y) axis intercept is zero. The world line of this photon is
shown in Figure 3. Also shown on this figure is the world line
of a second light pulse that starts out at the origin but travels
in the opposite direction, that of decreasing x.

5 The future light cone

Now why have I shaded in the triangle between the world lines
of the two photons and labelled this sector ‘causual future of
an event at the origin’? Remember that we decided nothing
can travel faster than the speed of light? So the shaded area

6



Figure 3: The world lines of photons passing through the origin
in the reference frame of some observer. The causal past of this
observer is all the events that can have a causal influence on the
origin. The causal future is all the events on which the origin
event can exert a causal influence. Points outside the shaded
areas can have no causal influence on the point (ct = 0, x = 0);
this set of points is called ‘space-like separated’ from the origin,
or sometimes ‘elsewhere’.
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represents the set of points in spacetime that a particle (or some
information, or anything else) travelling at a speed allowed by
relativity can reach. Any world line connecting an event at the
origin with a point outside this shaded region is unphysical -
any world line connecting these two points has to have gradient
less than 1 at some point along it, which means that the world
line represents something moving faster than the speed of light,
something that is ruled out in special relativity. Any point inside
this shaded region can be reached from the origin by means of a
world line that never has slope less than 1, so that the world line
represents something propagating at a speed always less than c.

The set of shaded points is often called the forward light cone.
The reference to a cone has to do with the fact that where you
allow two spatial dimensions, the set of world lines representing
light pulses starting at the origin and moving along straight line
trajectories in the x–y plane forms an upside down cone, with
every event inside the cone reachable by a particle travelling at
less than the speed of light and starting at the origin, and ev-
erything outside the cone unreachable from the origin in special
relativity. We say therefore that every event in the future light
cone of the origin is causally connected to the origin. If a signal
can reach that event from the origin, an event at the origin is
capable of exerting a causal influence on the later event.

What about the future light cone of events not at the origin?
What is the set of points in spacetime causally connected to
an arbitrary event? On a spacetime diagram it is easy to find
this set of points. Simply draw the two straight lines at 45 ◦

above the horizontal to the left and to the right of the event in
question? Any event between these two lines is in the causal
future of the point; any event not between these two lines is not
in the causal future of the event. There is nothing somebody at
that point can do to influence what happens inside his or her
future light cone.

6 The past light cone

Similarly, one may draw lines at 45 ◦ approaching an event from
the past. The region bounded by these two lines is called the
causal past or the past light cone of the event. The set of points
in this region is the set of all the events which may exert a causal
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influence on the event in question. Any event outside this region
can only be connected with this point by a world line that moves
faster than the speed of light at least some of the time, and is
therefore unphysical in the context of special relativity.

7 Elsewhere

You will notice that the past light cone and the future light
cone of an event do not cover all of the ct–x plane. There is
a large region of spacetime that is neither in the past nor the
future light cone of any given event. This region is sometimes
called ‘elsewhere’, though of course it is only ‘elsewhere’ for a
particular event. Points in this region represent events that may
occur at an earlier time or a later time than the origin event,
but are too far away from the origin to either causally influence
the event or be causally influenced by it.

8 Space–like and time–like separations

of events

Two events are said to be time–like if one event is in either the
future or the past light cone of the other. If this is not true,
then each event is in the elsewhere of the other. In this case,
the two events are also said to be space–like separated.

9 The sequence of time–like separated

events

If two events are time–like separated, then a signal may prop-
agate from one event to another. From a philosophical stand-
point, this is connected to the concept of causality. All observers
must agree that the two events occurred in the same order. Sup-
pose event A is my releasing a stone from my hand, and event B
is the stone breaking the window of a greenhouse. All observers
must agree that event A precedes event B in time, since it is
nonsense to think about the shattering glass of the greenhouse
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causing the stone to be released from my hand. And we can see
that these types of event pairs have to be time–like separated
because the world line of the stone travelling from my hand to
the greenhouse window corresponds to a stone moving at less
than the speed of light.

10 No agreed sequence for space–like

separated events

If two events are space–like separated, then no signal travel-
ling at a speed allowed by special relativity may connect the
two events, and therefore one event cannot cause the other. In
principle, and it turns out in practice, there is no reason why
two different inertial observers have to agree that the two events
occurred in the same order. So suppose myself and my friend
both agree to release stones at the same time in our coordinate
system at rest with respect to the greenhouse, but at different
points, Suppose further that both stones arrive at the green-
house at the same time as measured in the inertial coordinate
system we share with the greenhouse. Now consider what other
observers moving at different velocities might conclude. It will
turn out that as long as the events of the stone releases from
our hands are space–like separated, some observers see me re-
lease my stone before my friend releases his, and others see my
friends stone start out first. To see this we will use space–time
diagrams.

11 Overlayed coordinate axes in spe-

cial relativity

Let us see now how to overlay coordinate axes for a primed
coordinate system in a spacetime diagram in unprimed coordi-
nates. Suppose that the primed frame is again moving in the
direction of increasing x with respect to the unprimed frame.
Then Equations 2 are the Lorentz transforms between the two
frames. As in the Galilean case we find the equation for the ct′

axis by writing x′ = 0 into the Lorentz transform for x′ to obtain
the line x = vt, or ct = cx/v, or ct = x/β, where β = v/c as
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Figure 4: The coordinate systems of two inertial observers over-
laid. Lines of constant t′ are not parallel to lines of constant t.
As a consequence, different inertial observers disagree about the
time ordering of events that are time-like separated. This did
not occur in pre-relativity physics.

before. This is a straight line through the origin with gradient
1/β. Similarly, the x′ axis is the line ct′ = 0, which means that
ct = β x, the equation of a straight line with gradient β through
the origin. So the ct′ and x′ axes have gradients which are recip-
rocals of each other when drawn in the ct–x plane. Once again
the primed coordinates are skewed with respect to the unprimed
ones. This is illustrated in Figure 4.

Notice also in this figure that lines of constant ct′ are at different
angles with respect to the horizontal lines of constant ct. This
illustrates geometrically the point that in special relativity two
inertial observers may disagree with the order of two events that
are space-like separated. Consider; if two events are space-like
separated, then they can be joined together by a straight line
of slope less than 45 degrees. In this case, I can always find an
observer for whom a line of constant ct′ can have a slope steeper
than this line. For this observer, the two events will occur in
the temporal order BA. However, for another observer, whose
lines of constant ct′′ are of a less steep slope than the straight
line joining A and B, the two events occur in the order AB. This
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ceases to be true of events that are time-like separated, since
such events are linked by a straight line of gradient greater than
one. The maximum slope of a line of constant ct′ is 1, for an
observer moving infinitely close to the speed of light, and even
this observer does not see the order of the two events reverse.
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