
Lecture 2 - First principles of special
relativity and time dilation

E. Daw

April 4, 2011

1 Einstein’s postulates

Last time we learned about events and world lines on spacetime
diagrams, about the non-relativistic transformations between
the coordinates (t, x) and (t′, x′) of the same event measured
by two different inertial observers, and about relating spacetime
diagrams of the same world line drawn by different inertial ob-
servers. Finally, we noted that there is a problem in classical,
non-relativistic physics. That is, in principle teleportation of
objects is allowed, which seems to be nonsense.

Teleportation can be thought of as the propagation of a body
from one position to another at infinite speed. Einstein’s theory
approaches the problem of infinite speeds in the second of his two
postulates. Rather surprisingly, he makes a particular speed, the
speed of light, a special quantity. Here are his two postulates
stated formally:

1. All inertial frames are equivalent with respect to the laws of
physics.
2. The speed of light in a vacuum is the same to all observers:
c = 3.0 × 108 m s−1.

Postulate 1 is a restatement of the fact that there is no absolute
rest frame. It does not mean that two inertial observers will al-
ways get the same result when they make a measurement of the
same system. Instead, it means that the results of experiments
performed entirely in an inertial lab will be independent of the
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velocity of that lab. Rather subtly, this postulate incorporates
the requirement that two inertial observers agree as to their rel-
ative velocities, although if observer 1 measures the velocity of
observer 2, and vice versa, their two results will differ by a sign.
Postulate 2 is the revolutionary one. Consider its consequences.
You are on a train and you shine a light out of the front win-
dow. You measure the velocity of the light beam emerging from
the torch by some means. You get 3.0 × 108 m s−1. Your friend
on a bridge measures the velocity of the photons with respect
to the bridge. He also gets 3.0 × 108 m s−1 and not the sum
of this value and the velocity of the train. So for a start, the
pre-relativistic idea of addition of velocities is in need of modi-
fication to be consistent with postulate 2. Einsteins postulates
have other consequences, including the elimination of the charge
teleportation problem alluded to in lecture 1. However, let us
start with time dilation and return to teleportation later on.

2 A clock that uses light

Let us go into the business of making reliable clocks, something
needed for all mechanics experiments. We have in postulate 2
the idea that something (light) always travels in vacuum at the
same speed. Let us try and build a clock that exploits this fact,
and see where it leads us. Figure 1 is a diagram of the clock.

The clock consists of a source of light pulses with a coincident
light sensor, and a reflecting mirror a distance L away. A short
burst of light is fired towards the mirror, bounces, and returns
to be registered by the sensor after a travel time of

∆τ = 2L/c. (1)

The time of flight of the light pulse ∆τ is the time between clock
ticks.

Why build a clock like this? Firstly because it uses light whose
speed (we are told) is the same to all obsevers. Secondly, because
its mechanism is entirely one dimensional, so that if we cause
the clock to be moving with respect to another inertial observer,
and the direction of motion is perpendicular to the light path
in the instrument, we are pretty sure that the instrument will
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Figure 1: A light clock stationary with respect to our observer.
The time interval between clock tics is taken to be the time of
flight of a light pulse between the source and the photodetector,
bouncing off the mirror on the way.

not be distorted spatially from the point of view of the observer
with the motion with respect to the clock. Let us then suppose
that the clock is moving to the right with respect to a second
observer, at velocity v. The whole clock (light source, mirror,
and light sensor, moves in unison. This is illustrated in Figure
2.

3 Derivation of the time dilation for-

mula

Let us say that to this observer it takes a time ∆t′ for the light
in the moving clock to make the round trip. We will not assume
that ∆t′ = ∆t as we would in pre-relativity physics. We infer
that it took ∆t′/2 to reach the end mirror, by symmetry. In
this time the clock would have moved v∆t′/2, where v is the
velocity of the clock with respect to the observer. The vertical
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Figure 2: Our light clock as seen when it is moving at velocity
v to the right with respect to our observer.

displacement of the light between the source and the mirror is
unchanged - it is still L. Therefore by Pythagoras’ theorem, the
length of each of the two diagonals is

√
L2 + v2∆t′2/4. Therefore

the total distance travelled in time δt′ is 2
√
L2 + v2∆t′2/4. But

the distance travelled divided by the time taken is the speed of
the light pulse, which by postulate 2 must be c. Therefore we
get

c =
2
√
L2 + v2∆t′2

4

∆t′
. (2)

Therefore

∆t′ = 2

√
L2

c2
+
v2∆t′2

4c2
. (3)

Substituting in for L/c from Equation 1 we obtain

∆t′ = 2

√
∆τ 2

4
+
v2∆t′2

4c2
, (4)

or,

∆t′ =

√
∆τ 2 +

v2∆t′2

c2
. (5)

Squaring both sides we obtain
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∆t′2 = ∆τ 2 +
v2

c2
∆t′2. (6)

Rearranging and taking the square root, we obtain our final
result

∆t′ =
∆τ√
1 − v2

c2

. (7)

It is common to define γ as

γ =
1√

1 − v2

c2

, (8)

because this factor comes up so often in relativity. In this nota-
tion, Equation 7 is written

∆t′ = γ∆τ. (9)

This result is called the time dilation formula. What are it’s
components? ∆τ is the time between ticks of a clock (albeit an
odd one) measured by an inertial observer in whose coordinate
system the clock is at rest. ∆t′ is the time between clock ticks
measured by a second inertial observer, with respect to whom
the clock is moving with a constant velocity v directed along
the x axis, in this case in the +ve x direction. This formula
has various interesting properties. First, note that if v > c, the
square root has no real solution. Let us therefore ignore this
case for now, and consider v < c. For all v < c, the square root
is less than one, therefore ∆t′ is greater than ∆t. Third, the
size of the effect does not depend on the sign of v, only on its
magnitude. It does not matter whether the clock is moving to
the right or to the left with respect to the observer, it is only the
magnitude of v that determines the amount of slowing. Since we
chose the x axis arbitrarily, the clock can actually be moving in
any direction and you will get the same slowing of the pulse rate,
dependent only on the magnitude of v. And, as v approaches c
the clock tends to stop.
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4 The behaviour of the gamma factor

The γ factor determines how much slower the clock moves when
it is moving with respect to the observer than it does when it
is at rest. Therefore we should look at how γ depends on v.
In Figure 3 we have plotted γ against v/c, which is commonly
written β. When β is 1, v = c. When β = 0, the clock is at rest.

Figure 3: A plot of the relativistic γ factor as a function of v/c,
or β.

Notice that γ is very close to one until the clock speed passes
about 1/3 of the speed of light, but that as v approaches c, γ
becomes infinite. Notice also that γ > 1 for all v.

5 Assemblies of radioactive particles

as clocks

To a pre-relativity classical physicist, or to a sceptic (and there
are still some!), time dilation seems crazy. It defies common
sense. However, in another famous quote, this time from Ein-
stein:
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Common sense is the collection of prejudices acquired
by age eighteen

Rather as in quantum mechanics, there is a danger here of letting
our everyday experience cloud our judgement of physics outside
this realm. Let us instead if experiments support the prediction
of time dilation.

The problem with testing relativity in the lab is that its effects
such as time dilation only come into play when the objects in
question, clocks in this case, are moving at speeds close to the
speed of light. To test the prediction of time dilation we need
a clock that is moving much faster than any speed which we
are capable of accelerating an alarm clock to, for example. For-
tunately, we have at our disposal a wonderful array of natural
clocks - subatomic particles that are light enough so that they
commonly move at high speeds, and have an inbuilt process
associated with them that has a natural measurable timescale.
The classic example is particles unstable to radioactive decay,
or just radioactive particles. You will have met these at A level,
and there are a great variety of them. A given species of radioac-
tive particle has a characteristic lifetime, sometimes expressed
in terms of the mean lifetime τ of the particle. If you have an
assembly of N0 radioactive particles having a mean life τ , then
after a time t the number N(t) of particles left undecayed is
given by the radioactive decay law:

N(t) = N0e
−t
τ . (10)

For example, muons (or mu-mesons, or just µ+, µ−) are unstable
particles a bit like electrons, but heavier, that have a mean life
of 2.2 microseconds. If you start out with, say 1000 of these par-
ticles, and wait for 10 microseconds, Figure 4 shows the number
N(t) of the particles left undecayed as a function of time over
this interval, from Equation 10.

The decay of an individual particle cannot be used as a clock,
because the exact moment of decay is uncertain. However, if
we have an assembly of muons that is sufficiently large, we can
make a clock out of the whole assembly. Suppose initially we
have 1000 muons in a box. Some (undetermined) time later, we
count how many are left. This tells us how much time is elapsed.
For example, if we open the box and discover that 400 muons
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Figure 4: The number of undecayed muons remaining from an
initial population of 1000 as a function of time over 10µs.

remain undecayed, Figure 4 tells us that 2µs have elapsed since
we started.

Now, suppose we want to use this clock to test time dilation. We
would arrange for these muons to be moving at a known velocity
with respect to us, we would then count how many muons we
have at some initial instant, wait a prescribed amount of time
as measured on our own, stationary clock, and see how many
muons are left. The number of muons left tells us how much
time has elapsed on the moving clock made out of the collection
of high velocity muons. Our own trusted clock tells us how much
time has elapsed to a stationary clock. The ratio of the moving
clock time to the stationary clock time is equal to γ. If we know
the velocity of the muons, we can furthermore predict what γ
we would expect and see if the relativistic prediction for time
dilation agrees with our experiment.

There is one final refinement to this test. It turns out that
there are abundant muons at relativistic velocities produced in
cosmic rays! They are produced in the upper atmosphere and
decay as they move towards the Earth’s surface. Suppose we can
assume that the flux of muons from cosmic rays is independent
of position on the Earth’s surface over a few tens of kilometers,
and also independent of time when averaged over a large enough
time interval. We can then use cosmic ray muons to do this
experiment! This was done in the 1950s by a group at MIT.
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