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1 Motivational Introduction

Welcome to the relativity lectures of PHY206 here at Sheffield!
This subject is one of the reasons people decide to study physics
at University. It is interesting, profound, exciting, and power-
ful. It’s principal architect, Albert Einstein, is one of the iconic
figures of our time, and with good reason. You will have prob-
ably been taught before of some of the consequences of special
relativity - perhaps you have been taught that things get more
massive when they are moving at speeds approaching that of
light. Perhaps you will have heard the saying ‘moving clocks
run slow’. Perhaps you know about Lorentz contraction - the
observable fact that rigid bodies appear compressed parallel to
their direction of motion when moving close to the speed of light.
Certainly you will have seen the equation £ = mc?.

In this course, my main aim is to introduce these and other con-
cepts very carefully and precisely, so that as many as possible
of you understand how this subject fits in with the physics you
have studied previously, and to equip those of you who wish to
study the branches of physics that necessarily make use of spe-
cial relativity with a solid foundation on which to build further
later on. In particular, I wish to be careful to adopt modern
conventions and modes of thought so that you will not later be
confused by the conventions and choices made by research sci-
entists. Finally, and most of all, I want to make you all think
about this subject. The beauty of special relativity is that it is



conceptually not all that difficult, but philosophically quite pro-
found. Perhaps unlike quantum mechanics, you really can get
your head around this subject, and come out, with some work,
feeling that you have achieved a solid understanding of some-
thing truly marvellous and profound. I hope you enjoy these
lectures, and I wish you the very best of luck with this course.

2 The language of special relativity -
spacetime, events and world lines

Special relativity is an extension of the ordinary classical me-
chanics that existed before the quantum revolution in the 1920s.
In this classical world, we describe the state of a system by the
motion of its particles. As a particle moves around, we can use
Cartesian coordinates (x,y, z) to describe where the particle is
at any time . How would we determine the motion of a par-
ticle? Suppose for example that we are only interested in the
x—component of its position as it moved. Equipping ourselves
with a notebook, we would write down the x-component of the
particle’s position, z, and the time on our watch ¢ at which the
particle was in that position. We would then make a table of
these pairs of times and positions having two columns (or four
if we were measuring y and z as well), and this table would give
us information on the motion of the particle.

In this way of looking at things, the position x and the time ¢
are on an equal footing - it takes a set of pairs of values (¢, x)
to describe the x—component of the particle’s trajectory. The
idea of thinking of position and time as coordinates on an equal
footing occured to H. G. Wells who wrote in his book The Time
Machine:

if Time is really only a fourth dimension of Space,
why is it, and why has it always been, regarded as
something different?

Following Wells’ suggestion, therefore, we make a plot of ¢ versus
x; it is conventional to put x on the horizontal axis. Figure
shows such a plot.
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Figure 1: Our first spacetime diagram

This is our first space-time diagram, although the relativistic
ones we will be using soon are slightly different in that the time
axis has a factor of the speed of light inserted (ct instead of t),
for reasons that I will make clear presently. Each point on the
line represents an ‘event’ in the history of the particle’s motion.
Taken all together, the sequence of events trace out a contin-
uous curve, called a ‘world line’;, with a single value of z for
each t, since at least in classical physics, particles do not travel
backwards through time. The velocity of the particle is dz/dt,
which is one over the gradient of the line in our diagram, so
steeper lines represent slower motion, and stationary particles
have vertical world lines.

3 Inertial observers

In Section [2] we made a tacit assumption about the observer
making the measurements. Simplistically, we might claim that
the observer is at rest. In fact even before relativity it was
realized that concept of absolute rest is pretty meaningless. It
is more useful to specify that our observer is not accelerating.
You can make measurements to tell that you are accelerating,
since acceleration of massive bodies produces forces that can be
measured. Therefore any observer can test to see whether or not



they are accelerating. A non—accelerating observer is called an
inertial observer. Throughout this course all our observers will
be inertial.

4 Different Inertial Observers

It might occur to you that there are many different inertial ob-
servers. For a start, two different inertial observers may choose
different origins for their coordinates. There is no interesting
physics here. More interesting is the case where one observer is
moving at a constant velocity with respect to another. Neither
observer is accelerating, so both are inertial, but the coordinates
of events seen by the two observers will be different. How do the
coordinates of the same event written down by the two different
observers differ?

110
x'=0
u
- TEE e A
7 o & x!
Rl car urder clirechons

Figure 2: Two inertial observers viewing a coffee cup on a train.

It is useful to consider an example. Imagine that our two ob-
servers are a man on a bridge over a railway line, and a woman on
a train passing under it at velocity v in a direction aligned with
the x—axis of the man on the bridge. We will assume for now (in
special relativity it will turn out that this assumption cannot be
maintained) that the two observers have identical synchronized
watches, and that at time zero, the woman is directly under the
railway bridge, so that the origins of the coordinate systems of
the two observers coincide at time zero. Let us denote the co-
ordinates of the events seen by the man on the bridge by ¢ and
x, and the components of the same event seen by the woman on
the train as ¢’ and 2’. It is common practice to refer to these
two observers as the unprimed observer (the man on the bridge)
and the primed observer (the woman on the train). In this case
the primed observer is moving to the right, in the direction of
increasing x, with respect to the the unprimed observer.



Suppose there is a coffee cup positioned on a table next to the
woman on the train. What is the world line of this coffee cup
to the two observers? To the primed, woman observer on the
train, the coffee cup is not moving, so in her coordinate system
we could decide that the coffee cup is at her origin at all times,
so that 2’ = 0 for all . What about the world line of the same
coffee cup in the coordinate system of the unprimed man on the
bridge? To this man, the coffee cup is moving in the direction
of increasing = at velocity v, so that x = vt. How then are ¢
and z related to ¢’ and 2’7 For a start, we decided that both
observers have identical synchronised watches, so t =t'. And to
make 2’ = 0 consistent with x = vt we must have 2’ = x — vt.
Finally, the y— and z— components of the coffee cup world line
because the origins of the two coordinate systems coincide at
t = 0, and there is no motion of the two observers parallel to
the y— or z— axes subsequently. Therefore we have

t =t

T = x—ut

Lo 0
Z = z

Equations [I] are called the Galilean transformations. We de-
rived them using plain old common sense; they are named after
Galileo because he was the first person to write about inertia.
Before special relativity, they were considered obvious and not
subjected to scrutiny.

In Figure [3]T have drawn a spacetime diagram for the motion of
the coffee cup in the coordinate system of the unprimed observer,
the man on the bridge. The world line has a constant slope equal
to 1/v, where v is the train’s velocity, and it passes through
the origin since we decided that the woman and the coffee cup
passed under the bridge at time ¢ = 0. For definiteness, let
us suppose that the train is moving at 180kmh~!, which is
50ms~!, and consider its motion for 20 seconds after it passes
under the bridge.



Figure 3: The world line of the coffee cup in the coordinate
system of the unprimed observer on the bridge.

5 The meaning of axes on a space-
time diagram

Though you have drawn these kinds of plots lots of times, I want
to encourage you to think more about them now. Consider first
the set of points for which x = 100m. All these points lie on
a vertical line passing through the x—axis at the 100 label. I
have drawn a dotted line on the figure corresponding to this set
of points. Because the train is only 100 m after the bridge at a
single instant, the world line intersects this vertical line once, so
there is a single event where the train is 100 m after the bridge,
which I have circled on the plot. Let’s now think about how
to make this same argument algebraically. The vertical dotted
line has the equation x = 100. Let us figure out the equation
for the world line of the train. Start with the standard equation
for a straight line in an x—y plane, y = mx + ¢, where m is the
gradient of the line, and c is the intercept with the y axis. Now
relate to the current set of axes, where y is replaced by ¢, and
the gradient is 1/v, where v is the velocity of the train, 50 ms™!.
Finally, the y—axis intercept becomes the t—axis intercept, which
is zero because we have decided to define zero seconds as the time
when the train passes under the bridge. Therefore the equation
of the world line of the train is

t=1x/50 (2)



To find out where this line intersects the vertical dotted line,
substitute in the equation of this line, which is = 100, and
you get t = 100/50, or t = 2. Now notice that the event of the
train being 100 m past the bridge has t—coordinate 2 seconds.

I have belaboured this example. as a way of stressing that you
can use the geometry of spacetime diagrams in conjunction with
simple algebra of straight lines in planes to solve problems. In
this case, it was like cracking a walnut with a sledgehammer.
Later on this sledgehammer will come in handy.

Using these methods, let’s relate this spacetime diagram to what
the woman on the train sees. There are two ways to do this, the
first is to draw a spacetime diagram in the coordinate system
of the woman on the train. We will do this in your problems
class. The second is to consider how the coordinate system of the
woman overlays onto the spacetime diagram of the man on the
bridge. This is easy, but probably unfamiliar. What we would
like is a grid to overlay on the spacetime diagram we have drawn
from which we can read off the coordinates of events along the
worldline as they would be observed by the woman on the train.

Let us figure out how to grid lines of constant time first. In the
unprimed coordinates, these lines are horizontal. For example,
I have drawn a dotted horizontal line that represents the set of
events for which ¢ = 4s. But from the Galilean transformations
of Equations [1, we know that ¢’ = ¢, so that this horizontal line
represents also the set of events for which ¢ = 4s. Therefore
the lines of constant ¢’ are coincident with the lines of constant
t. Next, let us figure out where the 2’ axis is. The z axis
is coincident with the line of constant ¢ = 0 (if you can’t see
why this is, remember that in an x—y plane, the x axis is the
set of points for which y = 0, if that makes it clearer to you).
Similiarly, the x’ axis will be coincident with the line of constant
t" = 0, which is coincident with the line of constant ¢ = 0.
Therefore the z axis and the 2/ axis lie on top of each other.
We can therefore draw half of the grid we require, the lines of
constant ¢'. This half of the grid is shown in Figure [4

Next let us repeat this exercise to work out the lines of constant
x'. Suppose we want the line coincident with all events where
2/ = 100m. What does this line look like in the coordinate
system of the man on the bridge? Just substitute the equation
2’ = 100 into the expression for ' from Equations |l| and we get

100 = z — vt, or t = z/v — 100/v. With v = 50kms™!, this



Lo
A

i i s A0
e Hes3
Fot a9
101 BRI T R
priH " g 1o
i ks i i

100

Figure 4: A spacetime diagram for the moving train in the
coordinate system of the observer on the bridge, with lines of
constant ¢’ (the time coordinate for the woman on the train)
overlaid.

becomes t = x/50 — 2. This is a straight line with gradient 1/50
and t—axis intercept -2. We can repeat this exercise for all other
lines of constant x’, and you get the grid lines representing con-
stant 2’ that we require. Note that they are not perpendicular to
the lines of constant ¢’ that we already found. I have drawn the
entire grid of the coordinate system of the woman on the train,
overlaid on our coordinate system of the man on the bridge, in

Figure [5]

Mathematicians would say that the woman’s train coordinate
grid is skewed with respect to the man’s bridge coordinate sys-
tem. Notice that the world line of the cup of coffee coincides
with the line of constant 2’ = 0, so we have found out the hard
way that in the coordinate system of the woman with the cup in
front of her, it stays fixed in space. Walnut with a sledgehammer
again, but once again the point is to have the sledgehammer for
when we will need it.

6 Trouble with the Galilean transfor-
mations

Einstein was probably unaware of many of the experimental re-
sults that appeared to contradict the tenets of non relativistic



Figure 5: A spacetime diagram for the moving train in the
coordinate system of the observer on the bridge, with lines of
constant t' and lines of constant x’ overlaid.

mechanics at the time he wrote his revolutionary 1905 paper.
Instead, he made use of thought experiments to see that a more
sophisticated mechanics might be needed under some circum-
stances. Let us try and do the same thing here. You have heard
of the principle of conservation of charge. If we have a physical
system the total charge in it is conserved. So suppose our sys-
tem consists of a single electron. To an inertial observer, this
electron starts out at the origin. Now let us imagine that the
electron suddenly vanishes, reappearing at a different position at
exactly the same instant. Charge is conserved. Is this allowed?
Actually, this would be absurd. Suppose the place where the
charge reappears is in the Andromeda galaxy. To a local ob-
server, it would appear that charge conservation was violated,
even though it apparently is not. Something is wrong.

It is not sufficient to flail our arms and make statements that it
would be impossible to realize the physics of the charge moving
instantaneously from one place to another - the fact is that the
circumstances outlined here do not violate any known princi-
ple of classical theory. Furthermore, all inertial observers will
agree that the electron disappears in one place and appears in
a different place simultaneously - in Figure [ I have drawn the
world line of the electron along with the coordinate axes of var-
ious different intertial observers. To each of them, the world
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Figure 6: The world line of a jumping electron

line jumps between different positions at a single time. This
suggests, maybe something is wrong with the Galilean transfor-
mations. The cause of the trouble here is that the electron has
been allowed to move infinitely fast from one place to another.
In classical physics, there is no problem with this. Einstein won-
dered if the world actually works this way. We will eventually
return to this problem once we have some of Einsteins tools in
our arsenal and see that in special relativity the instantaneous
teleportation of charge (or mass, or any other conserved quan-
tity) through space is explicitly forbidden.

7 About the course

[ am handing out my own notes for the course, but I also recom-
mend the the book ‘Special Relativity” by Prof. A.P.French of
the Massachusetts Institute of Technology, published by Chap-
man and Hall. This nice little book costs £40 new or about half
that used from Amazon. It is particularly good on experimental
evidence supporting special relativity. Also, it turns out that
the University of Sheffield has the entire book available from
on-campus computers through this link:

http://lib.myilibrary.com/browse/open.asp?id=1972&loc=

There are also several copies in the Western bank library and
information commons.

I do hope you enjoy the course.

10


http://lib.myilibrary.com/browse/open.asp?id=1972&loc=

	Motivational Introduction
	The language of special relativity - spacetime, events and world lines
	Inertial observers
	Different Inertial Observers
	The meaning of axes on a space-time diagram
	Trouble with the Galilean transformations
	About the course

