Observation of the "Head-Tail" effect in low-energy nuclear recoils with a low-pressure CF₄ TPC

Gabriella Sciolla (MIT) BU-MIT-Brandeis Collaboration

Outline:

- Physics goals
- Detector concept and prototype
- Measurement of "Head-Tail" with low-energy neutrons
- Summary and Outlook

CYGNUS 2007

Boulby Underground Laboratory, 22-24 July 2007

Our goal

Develop a novel detector for direct detection of Dark Matter with the following characteristics:

- Directionality capability
 - No need to explain why here!
- Spin-dependent interactions
 - Enhanced in models in which LSP has substantial Higgsino contribution
- Low cost/unit volume
 - Directionality requires gaseous detectors
- Easy to maintain
 - Very stable, easy to operate underground
- Scalability
 - Modular structure

The BU-MIT-Brandeis Collaboration

S. Ahlen, H. Tomita, A. Roccaro*, M. Lewandowska Boston University

> N. Skvorodnev, H. Wellenstein Brandeis University

B. Cornell^{*2}, D. Dujmic, W. Fedus^{*}, P. Fisher,
A. Kaboth, J. Monroe, A. Piso^{*}, T. Sahin^{*},
G. Sciolla, R. Vanderspek, R. Yamamoto, H. Yegoryan^{*}
Massachusetts Institute of Technology

Note:

* indicates undergraduate students

² also Harvard University

Detector concept

- Low-pressure CF₄ TPC
 - 50-100 torr \rightarrow recoil ~ 1-2 mm
- CCD readout
 - Image scintillation photons produced in avalanche
 - $\# \gamma_{\text{scintillation}} \propto \# e_{\text{ionization}}$
 - Low-cost, proven technology
- CF₄ is ideal gas
 - Low transverse diffusion
 - Non flammable, non toxic
 - Good scintillation efficiency
 - <u>F: spin-dependent interactions</u>

Current prototype: the chamber

Current prototype at MIT

Current prototype: CCD camera

Simple and inexpensive (~\$2K)

- Finger Lakes Instrumentation
- Kodak KAF-0401 chip
- # Pixels: 768x512
- Pixel size: 9x9µm²
- Cooled (-20C)
- Photographic lens (55mm)

5.5 MeV alphas from ²⁴¹Am source

Alpha track traveling perpendicular to anode wires (vertical)

Gabriella Sciolla – MIT

Head-Tail effect in low-energy neutrons

Gas Gain and photon yield calibration

- Stable operation for Gas Gain ~ 10⁴ -->10⁵
 - Large wire by wire dependence (non-uniform spacing between wires)
 - Quality control was poor when we built the chamber
- Photon yield/keV vs V_{anode}

Head-Tail effect in low-energy neutrons

Effect of diffusion on resolution

- Dark Matter recoils ~ 1-2mm
 - Resolution << 1mm and diffusion must be contained</p>
- $\hfill\blacksquare$ Resolution vs drift distance measured with 4 α sources

Effect of diffusion on resolution

Bragg curve for 5.5 MeV alphas

- Alphas emitted parallel to anode wires
 - Wire plane oriented at 45 degrees
- Compare measured dE/dx vs range of the track with SRIM simulation
 - Excellent DATA-MC agreement!

Gabriella Sciolla – MIT Head-Tail effect in low-energy neutrons

x (mm)

The simulation

- Recoil energy vs scattering angle from kinematics
- Energy loss of recoiling nuclei by SRIM (include straggling)
- Light yield, resolution, diffusion as measured in the prototype
- CCD noise included

Simulation of a 500 keV F recoil: a) track propagation, b) Signal seen on the wires including diffusion, avalanche, QE, etc c) add CCD noise

Recoils from low-energy neutrons

- Nuclear recoils by low-energy neutrons mimic Dark Matter
 - DM: F has lower energy but is better aligned with WIMP direction
- Neutron source: 14 MeV neutrons from D-T tube

Experimental setup

Well below Bragg peak: dE/dx of recoils decreasing along n direction:

Gabriella Sciolla – MIT

Neutron Beam Setup

Analysis procedure

- Exposures of 1 second continuously with random trigger
- Selection criteria:
 - Reject empty images (70%)
 - Reject events with more than 1 segment/wire
 - Reject events on boundaries of view field (calibration problems)
 - Reject too short (<5 pixel) and too long tracks
- Selected 7% of events: measured rate 0.07/s
 - Cfr: expected rate ~ O(0.1 Hz) assuming n flux = 5x10⁷/s, 1 m distance, (1.2x0.8x2.6) cm³ active region

Observation of "head-tail" in recoils

Measured quantities

- Range: # pixels above threshold
 - Measured in x direction // anode wires
 - Cut in y +/- 3 pixels around wire
- Energy: integral of light yield on the wire
 - Measured in the y direction, perpendicular to anode wires
 - In +/- 5 pixels around wire, gaussian fit above flat background

Head-Tail effect in low-energy neutrons

Range vs Energy: DATA

Clear correlation between Range and Energy of the recoil

Black dots: wires @ 0 deg Open circles: wires @180 deg

Head-Tail effect in low-energy neutrons

Range vs Energy: DATA vs MC

- Error bars (yellow area) indicate <u>spread</u> in DATA (MC)
- Precision on range $\sim 15\%$
- Precision on energy ~ 50% (pressure, wire gain)

Observation of "head-tail" in recoils

Definition of skewness γ

We measure the skewness of light yield along the wire

$$\gamma(x)=rac{\mu_3}{\mu_2^{3/2}}=rac{\langle (x-\langle x
angle)^3
angle}{\langle (x-\langle x
angle)^2
angle^{3/2}}$$

Positive sign: neutron travels L to R

Negative sign: neutron travels R to L

Observation of Head-Tail effect: Skewness for neutrons Right to Left

Black dots: wires @ 0 deg Open circles: wires @180 deg

Head-Tail effect in low-energy neutrons

Cross check #1: $n \perp$ Wires

Cross check #2: $\alpha \perp$ Wires

Gabriella Sciolla – MIT

Head-Tail effect in low-energy neutrons

Cross check #3: α contamination

- Are we sure we are looking at F recoils and not alphas created by neutron's inelastic scattering in CF₄?
 - ${}^{19}F + n --> {}^{15}N + \alpha + n$ instead of ${}^{19}F + n --> {}^{19}F + n$
 - Compare cross sections

$$\frac{\sigma_F}{\sigma_{\alpha}} = \frac{0.9b}{\sim 0.3b} \sim 3$$

 Compare fractions of events with energy between 100 and 800 keV (range our detector is most sensitive to with present settings)

$$\frac{F_F}{F_{\alpha}} = \frac{46\%}{7\%} \sim 6.4$$

• P (F recoil) : $P(\alpha) = 19 : 1$

Our sample is dominated by elastic recoils of F

Conclusion

- First prototype of low pressure CF₄ TPC with CCD readout is up and running at MIT
 - Chamber calibrated with alpha sources
 - Satisfactory Data-MC agreement
- First results on measurement of Head-Tail effect for low energy neutrons
 - Preliminary results look very promising
 - Analysis is being finalized
- Proof of principle: detector concept works!
 - Time to move to the next phase...

Outlook

- Limitations of present prototype
 - Small chamber, cheap camera, designed and built on a budget
- Next generation prototype being designed
 - A few hundred liters chamber: >~50x50x50 cm³
 - Optimized design based on MC and experience with prototype 1
 - Much better CCD camera
 - Gas system to purify and re-circulate CF₄
 - Possible improvements: L1 Trigger, ∆z measurement, …
- Once new prototype is ready...
 - One year of data taking in underground lab
 - Analyze data, set limit on spin-dependent
 - Likely will hit some background --> improve detector
 - --> repeat iteration...

Gabriella Sciolla – MIT

Bragg curve for low-energy neutrons

- Much lower energy than 5 MeV alphas
 - 12 MeV n produce F recoils of a few hundred keV: well below Bragg peak!
- Very different dE/dx profile expected
 - dE/dx decreases along the path of the recoil

Scintillation Profile of a Track

Detection Principle

