

Taking DRIFT to the Limit

Directional Recoil Identification From Tracks

DRIFT Collaboration

Steven Plank

School of Physics University of Edinburgh

Introduction

- P Advantage of TPC offers directional capabilities
 - Focus on sensitivity reach of current technology
 - Unwanted interactions disregarded
 - WIMP signature virtually indistinguishable from
 - Neutron rates crucial
 - Mine environment extensively studied
 - Cosmic ray rates
 - Direct measurement of ambient neutron fluxes
 - Mass spectrometry of rock samples
 - Monte Carlo simulations of event rates
 - Determine lowest possible neutron background
 - Simulation of proposed setup
 - Passive shielding
 - Active neutron veto system

Alpha event in DRIFT

What is being simulated?

- DRIFT module inside 1.5m³ stainless steel vessel:
 - 1m³ fiducial volume: 167g of 40 Torr CS₂
 - Field rings
 - Skate plate
 - All plastic: MWPC strong backs, field ring combs, corner posts, HHV shielding....
 - 20cm thickness of enriched boron loaded liquid scintillator (BC-523-A) surrounds vessel.
 - 2m thick water shielding
 - → Dominant source of background neutrons remaining comes from detector vessel.

Neutron Production

- U & Th decay in steel gives rise to (alpha,n) reactions.
- Neutron spectra for 1 ppb U and 1 ppb Th produced using SOURCES
- Steel density 8.027 g/cm³
- 1ppb U \rightarrow 1.474 × 10⁻¹⁰ neutrons/sec/cm³
- 1ppb Th \rightarrow 5.164 × 10⁻¹¹ neutrons/sec/cm³
- Total neutron production = 2.5 × 10⁻¹¹ neutrons/sec/g

Simulated FV Rate

Geant4 simulation:

- Carbon + Sulphur Events
- 1ppb U \rightarrow 8.56 × 10⁶ neutrons fired
- 1ppb Th
 - $\rightarrow 3$ × 10^6 neutrons fired

NB only half (~867kg) volume of steel in simulation \rightarrow 2.19 x neutron production in real life vessel

Reports indicate 0.6ppb U, 0.7ppb Th partially offsetting this factor

 Defines minimum background levels achievable using present day technology

Threshold (NIPs / keV (C) / keV (S))			Nuclear recoil event rate (C / S / Total) (events kg ⁻¹ day ⁻¹)			Error (%)
0	0	0	1.7×10 ⁻³	1.4×10 ⁻³	3.1×10 ⁻³	2
20	0.7	1.1	5.7×10 ⁻⁴	8.5×10 ⁻⁴	1.4×10 ⁻³	3
100	3.3	5.6	4.8×10 ⁻⁴	6.7×10 ⁻⁴	1.2×10 ⁻³	3
500*	16	27	3.6×10 ⁻⁴	2.9×10 ⁻⁴	6.5×10 ⁻⁴	4
1000	32	48	3.0×10 ⁻⁴	1.9×10 ⁻⁴	4.8×10 ⁻⁴	4
1500	42	62	2.5×10-4	1.4×10-4	4.0×10 ⁻⁴	5
2000	52	78	2.4×10-4	1.1×10-4	3.5×10 ⁻⁴	5
2500	65	95	2.0×10 ⁻⁴	9.5×10 ⁻⁵	3.0×10 ⁻⁴	6
3000	79	111	1.9×10 ⁻⁴	7.5×10 ⁻⁵	2.6×10 ⁻⁴	6
3500	93	127	1.6×10 ⁻⁴	6.2×10 ⁻⁵	2.2×10 ⁻⁴	7
4000	107	144	1.5×10-4	5.2×10-5	2.0×10 ⁻⁴	7
4500	120	160	1.4×10 ⁻⁴	3.9×10 ⁻⁵	1.7×10 ⁻⁴	7
5000	134	176	1.2×10-4	3.0×10-5	1.5×10-4	8
5500	148	192	1.0×10-4	2.2×10-5	1.2×10-4	9
6000	162	209	9.2×10 ⁻⁵	1.7×10-5	1.1×10-4	10

* 500 NIPs = ~16 keV for Carbon recoils, ~ 27 keV for Sulphur recoils

Vetoed Events - Effect of Scintillator Threshold

20cm scintillator, quenching factor 0.4, Carbon + Sulphur Events

Fiducial volume threshold (NIPs)	Percentage of events in the fiducial volume also having an event above threshold (as indicated) in the veto						
	0 keV	50 keV	100 keV	500 keV			
0	95.38	92.57	90.70	79.66			
20	96.41	93.93	92.34	84.21			
100	97.03	95.07	93.46	85.47			
500	97.30	96.10	94.90	87.41			
1000	97.58	96.37	95.77	89.11			
1500	97.55	96.32	95.59	89.46			
2000	97.18	95.77	95.49	89.01			
2500	97.06	96.08	95.75	90.20			
3000	97.03	95.91	95.54	90.71			
3500	96.51	96.07	95.63	92.58			
4000	97.07	96.59	96.10	92.68			
4500	97.19	96.63	96.07	92.70			
5000	96.69	96.03	95.36	92.72			
5500	96.03	95.24	94.44	92.86			
6000	96.40	95.50	94.59	92.79			

E D

日

What does un-vetoed rate mean?

500 NIPs in FV, 50 keV scintillator threshold

• 20cm scintillator >96% neutron events tagged

Simulated geometry gives un-vetoed rate of

> $1.53 \times 10^{-3} \pm 20\%$ events/module/year

Simulation has less than half true volume of steel. For real vessel expect > $3.35 \times 10^{-3} \pm 20\%$ events/module/year

Target mass required to leave 1 un-vetoed event/year

Sensitivity

- Sensitivity limit ultimately determined by mass of CS₂ and running time but background rate does worsen limit
 - CS_2 detector at 500 NIP threshold for 300 kg.years with zero background $\rightarrow 8 \times 10^{-10} \text{ pb}$
 - DRIFT-type detector at 500 NIP threshold for 300 kg.years with a 20cm thick veto scintillator (six background events)

 \rightarrow 1.75 × 10⁻⁹ pb

- Proposed veto system approaches fundamental limit
- What prevents further improvements?

What happens to untagged neutrons?

DINB	Number un-vetoed events that terminate in:				
	Number of nu				
Threshold of fiducial volume (NIPs)	In fiducial volume	In fiducial volume and not seen in veto	plastic	vessel	Other*
0	3161	235	82	96	57
20	1450	88	24	36	28
100	1177	58	19	24	15
500	667	26	8	9	9
1000	496	18	6	6	6
1500	408	15	4	5	6
2000	355	15	4	5	6
2500	306	12	3	4	5
3000	269	11	3	4	4
3500	229	9	3	3	3
4000	205	7	2	3	2
4500	178	6	1	3	2
5000	151	6	1	3	2
5500	126	6	1	3	2
6000	111	5	1	3	1

mainly skate plate, also field rings & scintillator (low energy)

Improvements

To reduce neutron background rate

- *E* D Note Plastic in detector
 - Reduce volume of steel
 - Place veto within steel vessel
 - Use copper vessel
 - 0.01ppb U and 0.01ppb Th
 - Young's modulus for stainless steel is 190 GPa
 - Young's modulus for copper is 120 GPa
 - Assuming twice the mass of copper required this results in a factor ~85 times less neutron background than stainless steel.

Lower background allows for larger systems with longer running time which in turn gives better limit.

- MICROMEGAS
 - Improved readout resolution
 - Increased mass of CS₂

Conclusions

- E TPC Competitive technology
 - Advantage of directional capabilities
 - Present day technology
 - Extended shielded array (hundreds of modules) coupled to active veto
 - WIMP-nucleon cross section of order 1×10⁻⁹ pb
 - Improvements with radiologically pure materials
 - MICROMEGAS readout
 - Increased mass per vessel
 - Fewer modules required in array
 - Proposed array approaches fundamental limit of CS₂ gaseous system
 - Financially competitive with proposed tonne scale alternative technologies

Thanks to **DRIFT COLLABORATION**

References

• [CR paper] V.A. Kudryavstev, N.J. Spooner and J.E. McMillan, Simulations of muon-induced neutron flux at large depths underground, Nucl. Instr. and Meth. A 505(3) (2003) 688-698.

- [nuts] E. Tziaferi et al., First measurement of low intenisty fast neutron background from rock at the Boulby Underground Laboratory, Astroparticle Phys. 27(5) (2007) 326-338.
- [AMS work] Harwell Scientifics, Test Report: ME6476, Report on the Analysis of Potash and Rock Salt Samples for U, Th, K and 70-Element Scan, Internal DRIFT Collaboration Memorandum, (2006).
- [smith05] P.F. Smith et al., Simulation studies of neutron shielding, calibration and veto systems for gaseous dark matter detectors, Astroparticle Phys. 22 (2005) 409-420.
- [d2 paper] S. Burgos et al., First Results from the DRIFT-IIa Dark Matter Detector, unpublished.
- [FC] G.J. Feldman and R.D. Cousins, Phys. Rev. D 57, 3873 (1998).