Directional Signatures in DRIFT - Part II

> Daniel Snowden-Ifft Occidental College Cygnus 2007 July 22-24, 2007

Irish Legend

Head/Tail

Head/Tail Experiment

- Not in competition with Dinesh's work. Dinesh is doing the right thing by making careful measurements of the head/tail effect with a fine grained detector.
- Still I have concerns.
- 1st Concern Is there an effect?
- 2nd Concern If it is there, is it of any use to a big TPC like DRIFT?

DRIFT-IIc

Geometry of the Exposures

L .

Asymmetry Analysis

Geometry of the Exposures

Cf-252 neutrons on S

100 GeV WIMP on S

Analysis

- The analysis procedure was identical to DRIFT-IIa, see upcoming analysis paper, with three exceptions.
- The analysis parameters were different because of different noise and gain characteristics.
- The trigger threshold was set to 200 on <u>individual lines</u> for these runs.
- The *MissingNipsCut*, *OtherSideCuts* and *PreIonizationCuts* were turned off due to high interaction rates.
- Events passing all of the cuts with 1000 < NIPs < 6000 were accepted.

Run	Rate
+z	0.49 Hz
-Z	0.70 Hz
background	0.0026 Hz
	$= 224 \text{ day}^{-1}$

Example event

drift2c-20070628-02-0003-neut +z neutrons event number = 646, anode.Nips = 1095

time (microS)

time (microS)

Real Head/Tail Analysis

Ratio = 0.89

Ratio = 0.99

Ratio = 0.82

this.tmin.tmax.array

Ratio = 0.84

Ratio = 2.1

this.tmin.tmax.array

Ratio = 1

Ratio = 0.64

this.tmin.tmax.array

Ratio = 1.1

Ratio = 1.4

Ratio = 0.85

this.tmin.tmax.array

Left-Right Analysis Results

	Average Ratio 1000-6000 Nips	Average Ratio 1000-6000 Nips
	Left	Right
+z (left to right)	1.111 +/- 0.008	1.062 +/- 0.008
	Beg/End	End/Beg
-z (right to left)	1.039 +/- 0.010	1.105 +/- 0.006
	End/Beg	Beg/End

Beg-End Results

	Average Ratio 1000-6000 Nips Left
Beg/End	1.108 +/- 0.005
End/Beg	1.051 +/- 0.006

Beg/End - End/Beg as a function of energy

Nips ratio as a function of Nips

Theory

peak

Conclusions

- The head/tail effect is definitely there!
- As with the Δx and Δz directional signatures it has always been there so we can re-analyze old data to look for it if needed.
- It is likely to be dependent on diffusion only to 2nd order.
- It is likely that the strength of the signature can be improved with more analysis work.
- Need help with the theory!

The End

End/Beg - X as a function of energy

Nips ratio as a function of Nips

Nips bin

Nips vs R2

Nips vs R2 +z neutrons

Nips

Neutron Recoil Theory

Monte Carlo

Nips

Active Removal of RPRs

Miners

Miners, take 2

