
Theme 4:  

From the Greeks to the Renaissance: 

the Earth in Space 

4.1 Greek Astronomy 

Unlike the Babylonian astronomers, who developed algorithms to fit the astronomical data they 

recorded but made no attempt to construct a real model of the solar system, the Greeks were 

inveterate model builders.  Some of their models—for example, the Pythagorean idea that the 

Earth orbits a celestial fire, which is not, as might be expected, the Sun, but instead is some 

metaphysical body concealed from us by a dark “counter-Earth” which always lies between us 

and the fire—were neither clearly motivated nor obviously testable.  However, others were 

more recognisably “scientific” in the modern sense: they were motivated by the desire to 

describe observed phenomena, and were discarded or modified when they failed to provide 

good descriptions.  In this sense, Greek astronomy marks the birth of astronomy as a true 

scientific discipline. 

The challenges to any potential model of the movement of the Sun, Moon and planets are as 

follows: 

• Neither the Sun nor the Moon moves across the night sky with uniform angular velocity. 

The Babylonians recognised this, and allowed for the variation in their mathematical des-

criptions of these quantities. The Greeks wanted a physical picture which would account for 

the variation. 

• The seasons are not of uniform length. 

The Greeks defined the seasons in the standard astronomical sense, delimited by equinoxes 

and solstices, and realised quite early (Euctemon, around 430 BC) that these were not all 

the same length.  This is, of course, related to the non-uniform motion of the Sun mentioned 

above. 

• The planets undergo retrograde motion. 

All the planets spend part of the year moving “backwards” (retrograde) with respect to 

other motions seen on the night sky.  The Babylonians made accurate measurements of the 

period and nature of the retrograde motion for each planet; the Greeks again wanted a 

physical model. 

• The planets vary in brightness, and the Moon varies in apparent size, over time. 

The Greeks had a sophisticated understanding of geometry and were capable of recognising 

that these changes imply a variation in the distance of the objects in question.  However, the 

development of Greek models of the cosmos clearly show that these variations were not a 

primary concern of Greek astronomers (Ptolemy’s model of the Moon’s motion, which is a 

good fit to the Moon’s ecliptic longitude, is obviously wrong about the variation in the 

Moon’s distance, but this does not seem to have caused much concern). 



Of these, the retrograde motion of the planets is the most obvious; the others require careful 

observation and record-keeping, which is less apparent in Greek astronomy than in Babylonian. 

The Greek astronomers also lumbered themselves with the requirement that all celestial mo-

tions should be circles or combinations of circles.  This is clearly a philosophical axiom rather 

than an empirical constraint, the idea being that the Heavens are perfect and the circle is a per-

fect curve.  (Some of the more advanced Greek constructions, with the Earth at one side of the 

centre of the circle and another “special point”, the equant, on the other side, seem to the 

modern eye to scream “try an ellipse!”—that none of the Greek astronomers thought of this, 

despite the fact that Greek geometers were perfectly familiar with conic sections, shows the 

power of preconceived ideas.  In the same way, the visibly mottled surface of the Moon failed to 

convince them of the imperfection of celestial bodies.) 

4.1.1 Early work 

The first attempt to combine circular orbits to 

produce regular retrograde motion seems to have 

been the spheres of Eudoxus (~400–350 BC), see 

figure 4.1.  The construction involved two nested 

spheres, rotating in opposite directions around 

slightly offset axes. The poles of the inner sphere 

are fixed to the outer sphere, so most of the 

motion cancels out, leaving only a figure-of-eight 

called a hippopede (“horse-fetter”, because it 

looks like a hobble)1. If this nest is now placed in-

side another sphere to provide the overall motion 

along the ecliptic, you have a model of retrograde 

motion.  (Eudoxus actually used four spheres; the 

fourth allows the planet’s path to deviate from the 

ecliptic.) 

This model does not, in fact, represent the paths of the planets very well.  The shape of the 

hippopede requires the planet to cross the ecliptic four times (once at each end of the 8 and 

twice in the middle); this is not observed, and it is also impossible to adjust the spheres to give 

the right proportion of retrograde motion, especially for the outer planets.  However, its con-

struction of nested spheres seems to have shaped the thinking of all Greek astronomers there-

after.  It is not known whether Eudoxus thought of his spheres as real: he was a very able 

mathematician and geometer as well as an astronomer, and could easily have thought of them 

as imaginary “construction lines”.  However, the extremely influential Aristotle (pupil of Plato 

and teacher of Alexander the Great) certainly did think of them as real, which imposes severe 

constraints on model construction (real spheres must not intersect one another, whereas imagi-

nary spheres obviously can). 

Aristotle’s influence on astronomy is generally viewed as negative.  He did believe that the Earth 

is a sphere, and gave cogent arguments in favour of this; however, he was equally convinced 

that it was at rest and not rotating.  As with many other Greek philosophers, his concerns over 

                                                             
1 If you take a photograph of the Sun at the same time each day and superimpose them, you get a figure-8 
shape called the analemma.  The origin of the analemma is the tilt of the Earth’s axis with respect of the 
ecliptic: it does not look exactly like Eudoxus’ hippopede, because the Earth’s orbit is elliptical.  There is a 
nice account of the analemma at https://medium.com/starts-with-a-bang/throwback-thursday-the-
earths-analemma-590ce068eee2#.ozdgh62s8  

 
Figure 4.1: spheres of Eudoxus.  The figure-8 

shape is the hippopede.   
From http://www-groups.dcs.st-

and.ac.uk/~history/Biographies/Eudoxus.html  
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rotation and motion were essentially that only objects actually fixed to the Earth’s surface 

would share its motion: anything thrown into the air would come down miles from its starting 

point, in complete contrast to everyday observation.  In addition, his general theory of the four 

elements earth, water, air and fire required the Earth to be spherical and at rest in the centre of 

the Universe: he believed that the natural tendency of the element of earth was to fall down-

wards towards the centre—therefore the Earth must be spherical (the Greeks were aware that a 

sphere is the shape which minimises distance from the centre), and must be at rest at the 

central point. 

4.1.2 Heraclides and Aristarchos 

The “common-sense” arguments for the fixity of the Earth did not convince everyone.  Heracli-

des (388–315 BC) is known to have believed that the Earth rotates (his work has not survived, 

but several later writers refer to this), and may also have thought that Mercury and Venus orbit 

the Sun. 

Aristarchos (~330–230 BC) even proposed that the Sun is at rest and the Earth orbits around it 

(we know this second-hand, from a brief comment by Archimedes, and therefore do not know 

what Aristarchos thought about the motion of the other planets).  Aristarchos also wrote a book 

(which has survived) on the distance of the Sun compared to the Moon.  He argued that the 

Moon shines by reflected sunlight, and therefore at the precise moment of first or last quarter 

(when the Moon is exactly half illuminated) the angle Sun-Moon-Earth is a right angle.  If you 

can accurately measure the angle Sun-Earth-Moon, i.e. the Moon’s elongation, at that time, you 

can construct a right-angled triangle, and trigonometry will then give you the distance of the 

Sun in terms of the Moon’s distance. 

This calculation is sound in principle, but it is actually extremely difficult to measure the exact 

moment of first quarter (the terminator isn’t sharp enough, and gauging a precise half-circle is 

difficult), and the numbers Aristarchos plugged into his formula were badly wrong (he thought 

the Moon’s elongation at first quarter was 87°; it’s actually more like 89.8°). Hence he concluded 

that the Sun was about 20 times as far away as the Moon, when he should have concluded that it 

is about 400 times as far away.  Nonetheless, he still deduced that the Sun is considerably larger 

than the Earth; this may have motivated his belief that the Earth orbits the Sun rather than vice 

versa. 

Unfortunately, it is practically impossible to provide observational evidence for a heliocentric 

cosmos using naked-eye astronomy: indeed, as far as the Greeks were concerned, Aristarchos’ 

theory not only contradicted the everyday experience that the Earth is stationary beneath our 

feet, it also failed its only observational test.  In the Greek mind, the stars were located quite 

nearby, just beyond the outermost planet (agreed to be Saturn).  They would therefore have 

expected Aristarchos’ stars to have measurable parallaxes, which they did not.  Aristarchos’ only 

defence was to argue that the stars were extremely distant (this is the context in which Archi-

medes mentions him).  Although this is in fact the correct explanation, it’s not surprising that 

the Greek astronomical community dismissed it as special pleading. 

4.1.3 Hipparchos  

Hipparchos (worked ~167–126 BC) probably deserves to be remembered as the greatest of the 

Hellenistic astronomers.  In this era Seleucid Babylonia was part of the Greek world, and Hip-

parchos successfully combined the Babylonian tradition of accurate observations and record-

keeping with Greek model-building and geometry.  He made observations himself, as well as 

using Babylonian records, and compiled a star catalogue (it has not survived, but is almost 



certainly the basis of Ptolemy’s).  Pliny says the star catalogue was compiled because Hippar-

chos observed “a new star”—it is not clear whether he saw a nova, a comet, or a variable like 

Mira which is only visible with the naked eye for part of its cycle, but as a motivation it is curi-

ously reminiscent of Tycho’s “new star” (SN 1572), see below.  He also estimated the distances 

of the Sun and Moon, using the geometry of eclipses: his estimate for the Moon (between 59 and 

71 Earth radii) is consistent with the modern value, though his solar distance is a severe un-

derestimate. 

Hipparchos recognised the distinction between the tropical year (period between successive 

vernal equinoxes) and the sidereal year (Sun’s return to the same position in the stars). By com-

paring his results with those of earlier astronomers, he discovered the precession of the equi-

noxes and estimated its rate as “not less than 1° in 100 years” (it’s actually about 1.4°; Ptolemy 

seems to have taken “not less than 1°” as simply 1°, which was the source of considerable later 

confusion).  He verified earlier Greek observations of the inequality of the seasons, improved 

the measured values, and explained them by a model of the Sun’s motion in which the Sun’s 

orbit is not centred on the Earth (this is the original meaning of the word eccentric—Hipparchos 

and Ptolemy regularly use off-centre circles in their systems, but do not use ellipses). 

To understand the irregularity of the Moon’s motion, Hipparchos resorted to the idea of 

epicycles, see figure 4.2.  He does not appear to have invented this idea; Pannekoek says it is 

“connected with the name of the great mathematician Apollonius of Perga” (who, ironically, 

worked on the conic sections Hipparchos really needed); but he certainly developed it in the 

form later perfected by Ptolemy.  In the epicycle model, either the planet moves on a small circle 

whose centre (the deferent) moves on a larger circle, or the planet moves in a large circle 

whose centre (the eccentric) moves on a small circle: the two constructions are completely 

equivalent, as Hipparchos himself showed.  In Hipparchos’ theory of the Moon, the Moon moves 

clockwise round the epicycle; the deferent moves anticlockwise round the Earth.  Hipparchos 

knew that the Moon was relatively close to the Earth, and that parallax would introduce shifts in 

its observed position; he therefore used lunar eclipses as reference points (at a lunar eclipse the 

Moon is exactly opposite the Sun, and Hipparchos could calculate the Sun’s position from his 

theory of the Sun’s motion).  The resulting geometry gave good results for new moon and full 

moon, but—as Ptolemy noted—was not satisfactory at intermediate positions. 

               
Figure 4.2: epicycles.  Left, an epicycle described with the same period as the deferent, but in the 

opposite direction, effectively describes an off-centre circle.  Hipparchos used this for his lunar 

theory.  Right, an epicycle described in the same direction as the deferent, but with a different 

period, can create retrograde motion, as in Hipparchos’ and Ptolemy’s planetary models. 



Hipparchos also produced epicyclic models for the orbits of the planets.  However, the definitive 

statement of the epicyclic model of the geocentric cosmos was worked out not by Hipparchos, 

but by the Alexandrian astronomer Claudius Ptolemy (worked 127–150 AD). 

Hipparchos’ model of the motions of the Sun and Moon, and probably also of the planets, is em-

bodied in a remarkable object recovered in 1901 from a Roman ship wrecked off the Greek 

coast.  The Antikythera Mechanism (figure 4.3), dating from around 100 BC, contains gear 

trains which allow it to act as an orrery, i.e. a working model of the planetary system.  Its 

simulation of lunar motion includes an ingenious pin-and-slot construction that replicates 

Hipparchos’ theory of the Moon’s motion; it is suspected from the inscriptions (although the 

relevant gear trains are now lost) that it also included the motions of the planets. 

 

 
Figure 4.3: the Antikythera mechanism.  Top, the largest of the surviving fragments.  Bottom, reconstructed 

gear trains for the lunisolar calendar and eclipse predictor.  It is suspected that there were similar gear 

trains for the planets, but these have not survived. 

Pictures from T Freeth et al., Nature 444 (2006) 587−591. 

The Antikythera mechanism is an astoundingly sophisticated instrument.  Nothing remotely si-

milar survives from antiquity, but it is impossible to believe that this was the first such device 

ever constructed: it shows, as Freeth et al. comment, “great economy and ingenuity of design”, 

which are not features one expects in a first prototype.  Bronze is expensive and easily recycled: 

probably quite a few “Antikythera mechanisms” were melted down for their metal content in 

the two millennia that elapsed between the construction and recovery of the one we have. 



4.1.4 Ptolemy 

Ptolemy worked in Alexandria, had a Romanised name (Claudius Ptolemaeus), wrote in Greek, 

and was most probably an Egyptian Greek (perhaps a descendant of Alexander’s army).  As the 

latest and most developed form of the epicycle theory, his work on the subject, the Mathe-

matical Compendium (Mathematike Syntaxis, known by later Islamic scholars as the Greatest 

Compendium, Megiste Syntaxis, and hence—with the addition of the Arabic article al—ending up 

as the Almagest) became a classic reference among later astronomers, and has consequently 

survived in full.  He based much of his theory on that of Hipparchos—most of our knowledge of 

his work comes from Ptolemy’s account of it—but refined and improved it. 

The basic principles of Ptolemy’s epicycle model, as shown in figure 4.4, are as follows: 

• For inner planets (Mercury and Venus), the line joining the Earth to the deferent (in the 

epicycle view) is always parallel to the Sun-Earth line. 

• For outer planets (Mars, Jupiter and Saturn), the line joining the Earth to the eccentric (in 

the eccentric view; or the line joining the deferent to the planet in the epicycle view) is 

always parallel to the Sun-Earth line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With hindsight, as Thurston remarks, it is rather surprising that Ptolemy (or Hipparchos) did 

not think to equate all these parallel lines: if they had done so, they would have automatically 

constructed either the Aristarchan/Copernican heliocentric system or the Tychonic system in 

which the Sun goes round the Earth and everything else goes round the Sun (this is clearly 

equivalent to the Copernican system with a different reference frame).  The latter, in particular, 

does not violate the Earth-is-at-rest assumption.  The likely explanation is that, following Aris-

totle, they thought of the spheres defining the orbits as real, and therefore unable to intersect 

(the epicycles are seen as balls rotating inside a pair of nested spheres; although we draw the 

Mercury 

Venus 

Mars 

Saturn 

Jupiter 

Figure 4.4: Ptolemy’s model of the planetary system (not to scale).  The 

thick lines must all be parallel, so all the planetary positions (but not the 

Moon’s) are related to the Earth-Sun line. 



epicycle as crossing the deferent’s orbit, Ptolemy would have drawn an inner and outer circle 

surrounding the epicycle).  It is, of course, also possible that they never drew all the orbits out 

together, and thus failed to notice the regularity. 

Ptolemy’s real system was more complicated than this, 

because the planets’ behaviour does not have the sym-

metries this would imply (for example, periods of ret-

rograde motion are not all of equal length).  Ptolemy 

noted that the motion of the planets is not uniform as 

viewed from the Earth, and is also not uniform as 

viewed from the centre of its deferent circle.  He 

therefore assumed that the motion is uniform as seen 

from another point, the equant.  He assumed that the 

Earth and the equant were equidistant from the centre 

of the deferent circle, as shown in figure 4.5 (this is the 

construction that looks remarkably like the two foci of 

an ellipse, to us if evidently not to Ptolemy; and indeed 

the need for this device does derive from the elliptical 

orbits of the planets).  He also had a rather messy 

construction intended to reproduce the variation in 

the planets’ ecliptic latitudes—the mess is generated 

by the fact that the planets’ orbital planes pass through 

the Sun, not the Earth as Ptolemy expected.  Neverthe-

less, because the two-circles model is geometrically nearly correct (the planets’ motions are a 

combination of two “circles”—their near-circular orbits and the Earth’s near-circular orbit), it is 

not surprising that Ptolemy could get a good fit to planetary motions with this model. 

The Moon presented more of a problem, precisely because the two-circles model is not a good 

geometric representation of reality in this case.  Ptolemy modified Hipparchos’ theory by inclu-

ding both an epicycle and a moving eccentric, to try to improve the fit at half-moons.  This does 

help, but has the unfortunate consequence that the Moon’s distance from the Earth varies by 

nearly a factor of 2 over the course of its orbit.  This is clearly wrong—it would imply that the 

Moon’s apparent size would also vary by nearly a factor of 2, which someone would surely have 

noticed (it does vary, owing to the significant eccentricity of the lunar orbit, but only by about 

14%)—and Ptolemy must have known it was wrong.  However, the model does give a rather 

good description of the Moon’s ecliptic longitude over the whole of the lunar cycle.  Clearly 

Ptolemy was prepared to overlook the incorrect prediction of the Moon’s apparent size because 

of the correct prediction of the Moon’s position. 

4.2 Islamic Astronomy 

After Ptolemy, little new astronomical work emerged from the later Roman empire. The 

Romans, somewhat like the Egyptians, were extremely skilful engineers (consider aqueducts, 

hypocausts, etc.), but not much given to pure science.  Greek ideas spread via the trade routes to 

India, where a system similar to, but independent of, Ptolemy’s was developed by A ryabhaṭa 

around AD 500.  However, the most fruitful dispersal of Ptolemaic astronomy was to the Islamic 

world that developed in the Near East from the 7th century AD. 

The Islamic scholars had access to many now lost Greek manuscripts, and also close contact 

with Indian astronomers and mathematicians.  As mentioned earlier, they adopted the efficient 

Figure 4.5: Ptolemy’s model of a 

planetary orbit.  The Earth is located 

away from the centre of the orbit, and 

the equant is equidistant from the Earth 

on the opposite side.   
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decimal place-value numerical system of the Indians (which we, having got it from them, miscall 

“Arabic” numerals); they also developed the ideas of trigonometry, so that the tables of chord 

lengths used by Hipparchos and Ptolemy were replaced with modern sines and cosines.  They 

translated Ptolemy’s Syntaxis and other works into Arabic; some of these would have been 

entirely lost if it were not for Islamic scholarship. 

Despite their respect for Ptolemy’s work, Islamic astronomers did not accept it without 

question.  Like many earlier and later astronomers, they felt that the introduction of the equant 

violated the principle of uniform circular motion (which, by any reasonable argument, it does), 

and invented various ingenious if misguided schemes to reproduce its effects without intro-

ducing non-uniform motion.  They also recognised the unsatisfactory nature of Ptolemy’s theory 

of the Moon’s motion, and developed a rather better system employing an epicycle on the 

epicycle instead of an epicycle plus an eccentric. 

Many Islamic astronomers were theorists rather than observers—the supernova of 1054, which 

created the Crab Nebula and was extensively observed by the Chinese, attracted almost no 

attention in the Islamic astronomical community.  Nevertheless, they greatly improved astrono-

mical instrumentation, particularly the astrolabe, and made extremely good measurements of 

quantities such as the length of the year and the obliquity of the ecliptic.  (Part of the improve-

ment was due to longer time baselines, but better instruments also played a role.)  They con-

structed a number of astronomical tables, using Ptolemy’s theory but their improved measure-

ments, which spread to the West via Moorish Spain and were widely used. 

Although the number of genuinely new ideas introduced into astronomy by the Islamic scholars 

was rather small—they were much more inventive in mathematics and medicine—the debt 

owed to them by early modern astronomy is considerable.  This can be seen by the number of 

star names incorporating the Arabic article al: Aldebaran, Algol, Altair, Fomalhaut, etc. Perhaps 

more important in the long run were the advances made by Islamic mathematicians (note the 

words algebra, algorithm), which allowed calculations on the celestial sphere to be done simply 

and accurately using “Arabic” numerals and Arabic spherical trigonometry.  The conquest of 

Moorish Spain in the 12th century opened up a huge resource of Islamic astronomical literature, 

and led to the rebirth of astronomy in Western Europe. 

4.3 The Renaissance and the “Copernican Revolution” 

After the fall of the Western Roman Empire in the 5th century AD, Western Europe fragmented 

into many small “barbarian” kingdoms.  Although the Roman disdain for non-Roman cultures 

involves a considerable amount of prejudice, there is no doubt that very few of these new socie-

ties were as literate and educated as the preceding Romanised peoples had been, and astro-

nomy along with the other “liberal arts” fell into near disuse (apart from the fairly rudimentary 

observations needed to calculate the date of Easter, a lunar festival, in a solar calendar).  The 

situation began to settle down after around AD 1000, and astronomy began to revive thanks to 

contact with the Islamic world through Moorish Spain, and sometimes with what remained of 

Greek scholarship through Constantinople.  Ironically, it was probably the fall of Moorish Spain 

to the Christian Reconquista that did most to stimulate Western astronomy, by making Arabic 

manuscripts available (in Latin translation) to students in Western universities.  The initial 

signs of revival are various textbooks for university use, which improve over the course of the 

13th century as the Arabic knowledge is assimilated, and improved astronomical tables, in par-

ticular the influential Alfonsine Tables dedicated to King Alfonso X (“the Wise”) of Castile.  The 

astrolabe was introduced from the Islamic world in the 11th century, and other observational 



instruments such as the quadrant and the cross-staff were invented or improved in the course 

of the 13th century for use in observational astronomy and, increasingly, navigation. 

The 13th century also saw the development of early mechanical clocks: although the surviving 

descriptions actually date from the early 14th century, the clocks they describe are very sophis-

ticated and must have had simpler predecessors.  Since the telling of time was much more 

directly associated with astronomy then than it is now, many of the early 14th-century clocks are 

astronomical in nature, showing the phases of the Moon, sunrise and sunset, planetary posi-

tions, and so forth. 

4.3.1 Regiomontanus 

From the point of view of science and education generally, one of the most important inventions 

of this period was the mid-15th century development of printing with movable type.  This allows 

even complicated and abstruse texts, which would be extremely difficult for a professional 

scribe to reproduce without error, to be produced in multiple copies at reasonable cost.  It 

transformed the transmission of existing knowledge from a task which could consume the 

entire life of a trained professional into something which could be accomplished comparatively 

easily, and allowed new ideas, even unconventional ones which might not have seemed worth 

copying by hand, to spread quickly through the developing network of universities. 

An astronomer who was quick to see the value of printing was Johannes Muller of Konigsberg 

(1436–1476), known as Regiomontanus from the Latin version of his birthplace.  He was a 

student of a Vienna-based astronomer and astrologer, Georg Purbach, who had written a 

textbook explaining the Ptolemaic system for use in universities.  Regiomontanus visited Italy in 

the company of a Greek scholar named Bessarion, collected manuscripts, and settled down in 

the town of Nuremberg, a centre of the new printing industry.  There he organised a printing 

business, saw Purbach’s textbook into print (it was an academic bestseller) and a work of his 

own, the Ephemerides, containing a set of planetary tables for the next 30 years (another 

bestseller).  It is known that he planned to publish a comprehensive set of astronomical and 

scientific works of the Hellenistic school, including Ptolemy, Euclid and Archimedes, in new 

Latin translations (a letter of his concerning these plans survives); he also set up an observatory 

in the house of a patron, Bernhard Walther, from which he and Walther made a series of highly 

accurate observations of solar and planetary positions, using instruments of his own design. 

Had Regiomontanus lived to a ripe old age, the birth of modern astronomy would have been 

much easier.  Unfortunately, when Pope Sixtus IV decided that the Julian calendar had outlived 

its usefulness and needed serious revision, Regiomontanus was the obvious man for the job.  He 

was summoned to Rome in 1475 and died there a year later, with most of his plans uncom-

pleted.  His observing programme was continued by Walther, but his printing business was not 

taken on, and his intended Latin edition of the Greek scientific texts never appeared. 

4.3.2 Copernicus 

Fortunately, with the increased political stability of Europe, travel was becoming easier, and the 

loss of Regiomontanus’ textbook printing programme was not as disastrous as it might have 

been.  Nicolaus Copernicus (1473–1543), who was born in Poland and initially studied at the 

University of Cracow, seems to have had no difficulty in going to Italy to study law and medicine 

at the University of Ferrara (it is sobering to realise he might have had more trouble doing this 

in the 20th century than he did in the 15th!).  Astronomy was taught at Cracow, and Copernicus 

maintained his interest in the subject in Italy, learning Greek so that he could read the Hel-

lenistic classics, many of which had been brought to Italy by Greek scholars fleeing the fall of 



Constantinople in 1453.  Although he continued to study law, gaining his doctorate in 1503, he 

became known as an astronomer, lecturing on the subject in Rome in 1500 (according to an 

account by his student Rheticus). 

He then returned to Poland, where he worked as a cathedral administrator at Frauenburg 

(nepotism, literally; his uncle was the bishop!) and continued to think about astronomy.  Like 

the Islamic astronomers, he was unhappy with Ptolemy’s use of the equant; in his studies of the 

Greek works he would have been told of the theories of Heraclides and Aristarchus; he had pre-

sumably also read Purbach’s text, printed by Regiomontanus, in which Purbach said, “It is clear 

that each of the six planets in its motion shares something with the Sun, and the Sun’s motion is, 

so to speak, the common mirror and measure for their motions.”2  In 1512 he wrote a short 

paper called the Commentariolus (“little commentary”), in which he set out the principles of a 

heliocentric system.  This paper, however, was not formally published but simply sent out to 

friends and colleagues. 

Copernicus’ reasons for introducing a heliocentric system are more philosophical than scientific. 

He argues that the Earth rotates because it is “natural” for it to rotate, and therefore it is also 

“natural” for objects belonging to the Earth to partake in that motion; this avoids the problems 

raised by Aristotle and Ptolemy.  He also argues that the heavens, being larger than the Earth, 

are more likely to be stationary, and that being stationary is “nobler” than motion and therefore 

more appropriate for the heavens than the Earth.  These are clearly not arguments from obser-

vation.  Though more elegant, in the sense that the periods of retrograde motion appear 

naturally instead of having to be put in by hand for each planet, Copernicus’ theory was also not 

that much less complicated than Ptolemy’s: some of the epicycles he removed by putting the Sun 

at the centre were replaced by epicycles introduced by his removal of the equant.  (He could not 

remove the eccentric: in truth, his system is not quite “heliocentric” but centred on the centre of 

the Earth’s orbit.  As Hipparchos had realised over 1500 years before, this is necessary to 

explain the inequality of the seasons.) 

Indeed, Copernicus respected the work of the Hellenistic authorities rather too much.  His 

model was unnecessarily complicated by attempts to reconcile his observations with the results 

quoted by ancient astronomers, meaning that he treated as variable a number of quantities, e.g. 

the rate of precession, which really ought to be constants.  When he eventually wrote up a full 

account of his theory, including a series of calculations demonstrating that it could reproduce 

the observed motions of the planets as well as Ptolemy’s could, he consciously took Ptolemy’s 

Almagest as a model.  Although there is no doubt that he meant his heliocentric cosmology to be 

taken seriously as a model of the world (not simply as a calculational convenience), he still saw 

himself as refining and improving the models of the ancients, not really—despite the title of his 

work—as fomenting revolution in the heavens. 

Copernicus does seem to have been conscious that his theory might meet religious opposition—

not so much from the Vatican, which at this time was not strongly opposed to the heliocentric 

model (it was another half century before Galileo pushed the Catholic establishment too far), as 

from the Protestant authorities, who were more inclined to require the literal truth of the Bible. 

He delayed the publication of his complete work, the book De Revolutionibus (“On the Revo-

lutions”), until the year of his death, 1543, when it was published at Nuremberg by his pupil 

Rheticus (who had published a brief account of it, the Narratio Prima, in 1540). With hindsight, 

the effect of the publication seems somewhat anticlimactic: the work was appreciated as the 

basis for more accurate planetary tables (the Prutenic Tables, calculated from Copernicus’ re-
                                                             
2 The quotation is from Hoskin, pp 88−89.  Purbach therefore saw the regularity that Ptolemy seems to 
have missed. 



sults by Reinhold), but its theoretical basis was not generally accepted.  (One should note that a 

foreword had been added to the book by a theologian friend of Copernicus called Osiander, in 

which it was explicitly stated that the heliocentric idea should be regarded as a convenient 

fiction for calculation rather than a physical fact.  This foreword was not sanctioned by either 

Copernicus or Rheticus, both of whom took precisely the opposite view.) 

4.3.3 Tycho Brahe 

In the 15th century, Regiomontanus and Walther had established a new standard of accuracy for 

observations: Pannekoek says that the mean error of Walther’s planetary observations was only 

5', and his solar observations were better than this.  This tradition was continued in the 16th 

century by the Danish nobleman Tyge (Latinised to “Tycho”) Brahe (1546–1601).  Surprisingly 

to modern eyes, his interest was founded in astrology: he was a fervent believer in the idea that 

God created all things for a purpose, and since the stars and planets do not seem to have much 

of a purpose in timekeeping or illumination, their purpose must be astrology.  He was therefore 

disturbed to discover, when observing a conjunction of Jupiter and Saturn in 1563 (note he was 

then only 17), that the standard Alfonsine Tables were a month out in the predicted date, and 

even the new, Copernican, Prutenic Tables were days out.  How could reliable astrological pre-

dictions be made if the tabulated planetary positions were themselves unreliable?  He conclu-

ded that better observations, made with better instruments, were necessary, and began to 

design such instruments; in 1569 he designed a 19-foot quadrant in Augsburg, and a portable 

sextant for himself. He developed a clever zigzag technique to make accurate small subdivisions 

of angular scales (the Vernier scale was not invented for another half century). 

A key event in Tycho’s astronomical life occurred in November 1572: he observed a new star in 

the constellation Cassiopeia.  It was extremely bright—as bright as Venus—and obviously not a 

previously known object (we now know that it was a supernova).  Tycho was aware of Aris-

totle’s assertion that the heavens “above the Moon” did not change: this new object should 

therefore be lower than the Moon, which meant it would have a measurable diurnal parallax.  

He checked this by measuring its position relative to the other stars of Cassiopeia over the 

course of a whole night (the Earth’s rotation, rather than its orbit around the Sun (which Tycho 

did not believe in!), provides the baseline for a diurnal parallax measurement).  No parallax was 

seen: the star was not “sublunary”, and Aristotle was wrong.  He was sufficiently convinced of 

his observations to publish a book on the subject, De Nova Stella, in 1573 (despite misgivings as 

to whether book publishing was appropriate for one of noble birth!).  Similar observations of a 

comet which appeared in 1577 produced the same result: comets, too, belonged to the space 

beyond the Moon. 

Tycho built an observatory on the Danish island of Hven and equipped it with state-of-the-art 

instrumentation: quadrants, sextants and armillae.  His measurements of stellar positions were 

generally correct to within 1' or better—the best ever attained by naked-eye astronomy.  His 

observations of the new star of 1572 had been hampered by the poor quality of existing star 

catalogues, so the construction of a new and much more accurate catalogue was part of his 

observing programme.  He knew of Copernicus’ theories, but was not happy with the idea of a 

moving Earth, and developed his own hybrid model in which the Earth is fixed, the Sun and 

Moon orbit the Earth, and the planets orbit the Sun.  This explained the fact that the stars had no 

observable parallax, which seemed implausible in Copernicus’ model—Tycho, like other astro-

nomers of his time, could not believe that the stars were as distant as we now know them to be. 

One possible test of the different world systems was the search for a measurable parallax of the 



planets, especially Mars.  In Ptolemy’s system, Mars is always more distant than the Sun; in 

Copernicus’ and Tycho’s systems, Mars at opposition is much closer than the Sun.  Because the 

Sun’s distance had been consistently underestimated since antiquity, Tycho believed that, if his 

system or Copernicus’ were correct, he should be able to observe the parallax of Mars at oppo-

sition.  (In fact, the diurnal parallax of Mars, even at opposition, is only about 20", well below 

even Tycho’s limits for naked-eye observation.)  He therefore made extensive observations of 

Mars around several successive oppositions in the hope of demonstrating the incorrectness of 

the Ptolemaic model.  Although this endeavour was doomed to failure, the resulting set of 

detailed, accurate observations of Mars provided the data that Johannes Kepler would use to 

overturn the centuries-old assumption of circular motion in the heavens. 

4.3.4 Johannes Kepler 

Kepler (1571–1630) was born near Stuttgart and studied at the University of Tubingen, inten-

ding to enter the Protestant ministry, but was sidetracked into mathematics when Tubingen 

was asked to provide a mathematics teacher for the town of Graz.  Fortunately, the astronomy 

professor at Tubingen, Michael Mastlin, covered the Copernican model in detail in his courses, 

and Kepler was impressed by its elegance.  This conviction was cemented when he discovered 

that he could produce a fairly good fit to the relative orbital radii of the six planets by assuming 

that their spheres were separated by the five Platonic solids.  In 1596 he published a book, 

Mysterium Cosmographicum, detailing this theory.  Tycho received a copy of the book, was 

impressed by it, and invited Kepler to join him at Hven.  Kepler initially refused, but religious 

persecution of Protestants made life in Graz untenable, Tycho moved from uninviting Hven to 

more sophisticated Prague, and Kepler decided that joining him wasn’t such a bad idea.  He 

arrived in Prague in 1600, a few months before Tycho’s death, and made a sufficiently good first 

impression that when Tycho died he was appointed Imperial Mathematician. 

Tycho had asked Kepler to preserve his legacy. Kepler did so in spectacular fashion, if not in the 

way that Tycho, as a non-believer in a heliocentric cosmology, would have wished.  Using 

Tycho’s extensive series of observations of Mars, Kepler set out to produce a precise mathe-

matical description of planetary orbits.  The eventual report of what Kepler called his “warfare 

with Mars” was a book called Astronomia Nova (“New Astronomy”).  The book is most unlike a 

modern scientific report, in that it covers, in exhaustive detail, every stage of his analysis, blind 

alleys and all, and therefore gives a clear picture of his thought processes.  He began by using 

Ptolemaic tools, including the despised equant, to fit the orbit.  This produced a fit that would 

have seemed good enough for earlier data—but discrepancies of 8 arc minutes were not, in 

Kepler’s opinion, tenable with Tycho’s exceptionally accurate observations.  Kepler suspected 

that his assumptions about the Earth’s orbit, based on Ptolemy and Copernicus, were at fault. 

Detailed analysis showed that, indeed, these assumptions were flawed: Earth, like the other 

planets, needed a displaced equant point to describe its orbit. 

Kepler was enough of a proto-physicist to dislike the idea that the motion of a planet is deter-

mined by reference to some arbitrary point in empty space. He felt that, despite appearances, it 

must in fact be the Sun which determined the varying speed of the planet.  After much calcula-

tion, he first decided that at aphelion and perihelion the planet’s speed was inversely propor-

tional to its distance from the Sun, and later (using an approximation to the not-yet-invented 

integral calculus) that the area swept out in a given time was constant.  This is what we now 

know as Kepler’s second law. 

Armed with the second law, and a better orbit for the Earth, Kepler went back to the Mars data, 

only to find that he still had an 8 arc minute discrepancy.  He finally concluded that there was no 



way to interpret the Mars data satisfactorily with a circular orbit: the orbit must be “oval”. 

“Oval” is a vague term, and Kepler did not initially assume an ellipse, for the completely sensible 

reason that it seemed too obvious—surely, if an ellipse were the correct answer, one of the 

Greek experts on conic sections would have realised this?  However, eventually he realised that 

the fractional difference between the semi-major and semi-minor axes of Mars’ orbit, (1 – b/a), 

seemed to be equal to half the square of its eccentricity.  This is exactly what one expects from a 

low-eccentricity ellipse (the semi-minor axis of an ellipse is given by b2 = a2(1 – e2), so for small 

e the binomial expansion gives b = a(1 – ½ e2)).  The orbit really was an ellipse, with the Sun at 

one focus: this is Kepler’s first law. 

(Note that it is our extreme good fortune that Mars, the best subject for Tycho’s attempted 

parallax measurement, is one of only two naked-eye planets with a significantly eccentric orbit; 

the other, Mercury, is too close to the Sun for decent naked-eye observations.  Had Mars’ orbit 

been as nearly circular as Venus’, Kepler would never have had to abandon circular orbits.) 

The Astronomia Nova was written in 1605 and finally appeared in print in 1609.  Kepler 

subsequently analysed the orbits of Mercury and Venus in terms of ellipses, and in 1618 

published an Epitome of Copernican Astronomy in which the whole solar system was interpreted 

in terms of his new ideas.  As Tycho had, he also disposed of the varying constants Copernicus 

had introduced to accommodate the measurements handed down from antiquity (as a 

dedicated observer, Tycho probably had a clearer idea of the reliability of these measurements 

than his predecessors did!).  The Epitome presents the solar system in essentially its modern 

form, though the absolute scale was still unknown (Kepler did know that the parallax of Mars 

must be smaller than about 1', because it was not visible in the residuals for his fitted orbit) and 

there was no explanation of the motion.  Kepler also set in train the calculation of new tables of 

planetary positions based on his new theory: these Rudolphine Tables (named for his sponsor, 

the Holy Roman Emperor Rudolph II) were eventually published in 1627. 

Kepler himself never lost the mystic streak that had resulted in his early Mysterium Cosmo-

graphicum.  His book Harmonice Mundi (“Harmony of the World”) attempts to connect his astro-

nomical work with other fields such as geometry, numerology and music, largely without 

success.  It is, however, remembered for one relation which has stood the test of time: his third 

or harmonic law, that the cube of the orbital radius of a planet is proportional to the square of 

its period. 

4.4 The birth of modern science: Newton and the Principia Mathematica 

The 17th century marked a turning point in the history of science.  During this period, the first 

scientific societies and journals were founded, casual observation gave way to controlled 

experiments, the invention of calculus allowed previously intractable mathematical problems to 

be addressed, and the whole idea of science as the explanation of empirical observations by 

means of universal mathematical laws became established.  The crowning achievement of 17th 

century science was Isaac Newton’s Principia Mathematica Philosophiae Naturalis (“Mathema-

tical Principles of Natural Philosophy”), one of the most influential books in the history of 

science. 

Kepler’s three laws of planetary motion are an early example of the 17th-century approach: they 

condense the principles of planetary motion into three general laws which are stated in 

mathematical form.  However, Kepler’s laws were purely empirical—there was no explanation 

of the physical principles behind them.  Kepler recognised the need for this, and attempted to 



address it, but without success.  He did recognise that the key to the problem must be the Sun, 

but without the general concepts of inertia and force he was unable to make progress. 

Inertia is a key concept in classical mechanics.  Up to this point, it had seemed self-evident that 

the natural state of (terrestrial) matter is to be at rest relative to the Earth: if you stop pushing 

something, it stops moving.  This common-sense idea was challenged by Galileo in his experi-

ments on inclined planes: he argued that a ball rolling down an inclined plane accelerates, at a 

rate which decreases as the slope decreases; a ball rolling up an inclined plane decelerates 

similarly; so a ball rolling on a perfectly level plane should neither accelerate nor decelerate, but 

continue moving at a constant speed.  (He also showed that, if the ball starts at rest, the distance 

moved is proportional to the square of the elapsed time—in modern notation, s = ½ at2.)  These 

were some of the earliest properly controlled physics experiments; Galileo left detailed des-

criptions of his equipment, which show the care he took to avoid potential problems such as 

friction.  Histories of science written by scientists (as opposed to historians) tend to agree in 

regarding Galileo as the first truly modern scientist.  However, despite his triumphs with the 

telescope and his (personally disastrous) popularisation of the Copernican model, Galileo 

himself did not make great advances in astronomical theory. 

René Descartes (1596–1650), in contrast to Galileo, was a theoretician and philosopher rather 

than an experimentalist.  His basic philosophical principle was that matter and space are 

essentially identical, being differentiated only by their motion: what we perceive as matter is, 

according to Descartes, a vortex in the matter/space fluid.  Because the fluid is all-pervading, it 

is natural that bodies/vortices should exert forces on one another (though Descartes did not 

achieve a quantitative understanding of Kepler’s laws). Descartes incorporated Galileo’s fin-

dings—effectively, what we now call “Newton’s first law”—into his theory; however, in practice, 

it would be almost impossible for a body in Descartes’ universe to be isolated from external 

influences.  His ideas, set out in his Principles of Philosophy of 1644, were extremely influential 

in the mid-17th century: the young Newton was a Cartesian. 

The Royal Society, founded in 1660, brought together the many gifted British scientists of the 

17th century, and provided a forum for their papers in its Philosophical Transactions. The Royal 

Society had a strong experimental bias, unlike the more philosophical bent of Descartes; Robert 

Hooke (1635–1703) was their Curator of Experiments, charged with devising interesting de-

monstrations for the edification of the Fellows.  Following William Gilbert’s description of the 

Earth as a magnet, the fellows of the Royal Society were inclined, like Kepler, to think of the 

Sun’s influence on the planets as in some way related to magnetism.  This did produce the useful 

idea that the force of attraction should diminish as the distance between the bodies increased: 

in 1662, Hooke tried to measure the reduction in gravity between ground level and the top of 

tall buildings such as Westminster Abbey. 

Hooke does deserve credit (which Newton, who detested him, was reluctant to give) for sug-

gesting that gravity was an inverse square law, and affected both falling bodies and planetary 

orbits.  However, he did not have the mathematical skill to prove that the inverse square law 

was correct (he also considered a 1/r law), and—typically—he failed to follow up on his initially 

promising ideas.  In fact, combining Kepler’s third law with the circular acceleration v2/r found 

by Huygens in 1673 makes an inverse square law for planetary orbits seem natural; however, 

the task of demonstrating that more complicated curves, i.e. Kepler’s ellipses, follow from an 

inverse square law was pushing 17th century mathematics to its limits. 

Isaac Newton (1642–1727) is one of the great geniuses of science.  He became Lucasian Pro-

fessor of mathematics at Cambridge in 1669, at the age of 27—his mentor, the incumbent 

professor, resigned in his favour.  He was a brilliant mathematician, and invented differential 



calculus (“the method of fluxions”)3, which provided him with an invaluable tool in studying 

orbits, and became interested in the problem of gravity at an early age: the story that he was 

inspired by watching an apple fall in a local orchard seems to have some basis in truth, although 

the idea that it hit him on the head is a later embellishment.  He and Hooke exchanged letters on 

the subject before falling out. 

It is not clear exactly when Newton worked out the relation of elliptical orbits to the inverse 

square law, but it was certainly before 1684, since he already knew the answer when Halley 

asked him in that year what orbital shape corresponded to an inverse square law of force. 

Halley asked him for the proof; Newton promised to supply it, and sent Halley a nine-page draft. 

In this first draft the attraction was one way—the Sun attracted the planets, but not vice versa—

but this was quickly remedied in a second draft.  The full version of the Principia was eventually 

published, thanks to Halley’s diplomacy (everyone seems to have liked Halley, in contrast to 

both Newton and Hooke) in 1687. 

The Principia established the concept of momentum (“quantity of motion”, in Newton’s Latin), 

the three Laws of Motion, and the Law of Universal Gravitation.  Newton demonstrated that 

motion under an inverse-square force would take the form of a conic section (an ellipse for 

planets, but perhaps a parabola or hyperbola for comets), and that the force required to keep 

the Moon in orbit was exactly consistent, under the assumption of an inverse square law, with 

the acceleration of falling bodies near the Earth’s surface.  He also discussed the tides, the 

slightly flattened shape of the Earth, and the resulting precession of the equinoxes.  The book 

was a tour de force. 

Unfortunately it was also extremely hard to understand: although Newton probably worked out 

his results using calculus and algebra, he chose to present them in the traditional Greek style of 

geometrical proofs, which were very difficult to follow.  Perhaps because of this, it took some 

time for Newtonian physics to oust Cartesian vortices.  An additional problem was the extreme 

difficulty of solving Newton’s equations for any but the simplest systems (in fact, there are no 

general analytical solutions to many-body problems in Newtonian gravity); in the 18th century, 

some very talented mathematicians (e.g. d’Alembert, Euler, Lagrange, Laplace) worked on 

developing the necessary techniques.  Probably the most public triumph of Newtonian theory 

was engineered by Edmund Halley, though he did not live to see it completed.  Halley investi-

gated historical records of comets, to see if any could be explained in terms of an elliptical orbit: 

he found that the comet of 1682 had a retrograde orbit strikingly similar to those of 1531 and 

1607, concluded that this was a single comet on a closed elliptical orbit, and predicted its 

reappearance “about the end of the year 1758, or the beginning of the next.”  It duly returned, 

reaching perihelion in March 1759 (Halley’s slight error was the result of neglecting the 

influence of Jupiter on the retreating comet), and has been known as Halley’s Comet ever since.  

Newton’s laws reigned for over 200 years, until Einstein published the General Theory of 

Relativity in 1915, and are still the backbone of most dynamical calculations in astronomy and 

physics.  From 1687 onwards, astronomy and physics are recognisably sciences in the modern 

sense. 

 

 

                                                             
3 Leibniz invented the technique independently at about the same time. Typically—he really doesn’t seem 
to have been a likeable man—Newton engaged in an acrimonious argument over priority. 



4.5 The Solar System after Newton 

The success of Newton’s laws established the modern picture of the solar system, although its 

scale was still a matter of dispute, gradually resolved over the coming 250 years with 

improvements in technology (see next section). However, the 17th century solar system still 

contained very few ingredients not known since antiquity—only some satellites and Saturn’s 

rings had been added to the tally of Sun, Moon, six planets, and the occasional comet.  The first 

advance on this was made in 1781, when William Herschel discovered Uranus. This was a 

technology-driven accidental discovery: Herschel had the largest telescopes of his day, and 

nobody was expecting additional planets in the solar system.  Indeed, Herschel initially thought 

he had discovered a comet, and only realised the magnitude of his achievement when orbital 

calculations demonstrated that the new object (which he tried to call Sidum Georgium, for King 

George III) had a planetary near-circular orbit rather than a cometary ellipse. 

Uranus’ discovery had the side-effect of apparently verifying a numerological relation between 

the sizes of planetary orbits known as the Titius-Bode Law, proposed by Johann Titius in 

1766 and publicised by Bode in 1772 (as with many astronomical ideas, it may have been 

circulating earlier).  This rule “predicts” the planetary orbits according to the algorithm a = 4 + 

3×2n, where n = −∞, 0, 1, ... (i.e. the sequence goes 4, 7, 10, 16, 30, 52, 100, 196, 388, ...). 

Measured in tenths of an AU, the true values are 3.87, 7.23, 10.0, 15.2, 52.0, 95.4, 192. This last 

number is for Uranus, and is close enough to the predicted 196 that astronomers began to look 

seriously at the “gap” corresponding to 30. Around the turn of the 19th century, a group of 

European astronomers, calling themselves “the Celestial Police”, planned a systematic hunt for 

the “missing” planet, but were beaten to it by Giuseppe Piazzi, who discovered Ceres during a 

sky survey in 1801.  Owing to illness, Piazzi “lost” Ceres after only a month of observations, 

which made it impossible with the techniques of the day to establish its orbit; fortunately, the 

brilliant German mathematician Carl Friedrich Gauss took an interest in the problem, and was 

able to use his newly invented method of least squares (“which,” says Agnes Clerke, “he had 

devised though not published”—which was entirely typical of Gauss, who became notorious for 

not publishing even major discoveries) to fit the orbit and predict Ceres’ reappearance in the 

night sky to within half a degree. 

Ceres was followed in rapid succession by Pallas, Juno and Vesta, and the status of these objects 

as bona fide planets became questionable: one object in a “planetary” orbit, however small, had 

claims to be a true planet, but four in the same region of space seemed less appropriate.  Her-

schel demoted them to “asteroids” (the name, meaning “starlike”, refers to their appearance in a 

telescope, not to their nature); Clerke calls them “minor planets”.  Both terms entered the astro-

nomical nomenclature, eventually to be superseded in 2006 by the new IAU definitions, which 

make Ceres and any other asteroids large enough to be approximately spherical “dwarf planets”, 

and the remainder “small solar system bodies”.  The latter term is too unwieldy for common 

use: I predict that “asteroid” will remain the standard usage, misleading though it is (asteroids 

are not “starlike” in any real sense). 

Uranus was thus discovered by accident, as was Ceres, but the other early asteroids were 

discovered as a result of an empirical (or inductive) prediction; Ceres presumably would have 

been found by the Celestial Police if Piazzi hadn’t found it first.  The next major solar system 

discovery was also made following a prediction, but the prediction was of a completely different 

character. 

By the early 19th century, the orbit of Uranus was causing serious concern.  Uranus is fairly 

bright, reaching magnitude 5.5 at opposition, and had been recorded as a fixed star several 

times before Herschel noticed that it moved.  These “pre-discovery” observations should have 



made it possible to compute the orbit of Uranus with considerable accuracy—but in fact it 

proved impossible to reconcile them with the post-discovery positions.  Ignoring them as 

inaccurate and fitting only the recent measurements was tried, but within a few years it became 

apparent that this orbit was also failing to predict Uranus’ motion within the observational 

errors of the time.  One possibility seriously entertained was that Newton’s law of gravity failed 

at large distances, but the more popular hypothesis was that an undiscovered outer planet was 

responsible.  This “inverse problem” of locating a perturbing object from its perturbations is 

much harder than the direct problem of calculating the perturbations from the location and 

mass of the object, and was at the limits of the mathematical skills of the time.  Two people, John 

Couch Adams of Cambridge and Urbain Jean Joseph Leverrier of Paris, independently took up 

the challenge, and both produced positions for the perturbing body.  Famously, Adams (who had 

only just graduated) had great difficulty in persuading the British astronomical establishment to 

take him seriously, whereas Leverrier, whose reputation in celestial mechanics was established, 

fairly easily convinced Johann Galle of the Berlin Observatory to take a look.  Galle promptly 

discovered Neptune; Challis, who had finally been asked by Airy, the Astronomer Royal, to 

conduct a search (after Airy had been sent Leverrier’s prediction and had found it to be in 

agreement with Adams’), would have found it earlier, but had for some reason failed to examine 

the plates on which it was to be found.  Considerable acrimony ensued, because this repre-

sented the British losing out to the “Continentals”; it is to Adams’ credit that he did not 

participate.  Indeed, the controversy has continued to this day: because Adams’ predictions 

were not published at the time, it is difficult to be certain that the material he sent Airy would in 

fact have led to the discovery of Neptune had it been acted on, and some commentators have 

accused the British participants in the debacle of unjustly attempting to secure credit for Adams 

after the fact. 

Be that as it may, the discovery of Neptune is clearly different in kind from those of Uranus and 

the asteroids.  As with the asteroids, the discovery arises from a prediction; but the prediction is 

not a simple numerological guess but a clear consequence of an established physical law: if 

Newton’s laws are assumed to hold, then there must be a planet close to the predicted position4. 

When the planet was duly found, it provided a very strong confirmation of the universal validity 

of Newton’s laws. 

The final major discovery in the outer solar system, that of Pluto, is often presented as a com-

panion piece to Neptune’s.  In the early 20th century it appeared that Uranus’ orbit was not fully 

explained by Neptune, and several astronomers suggested the presence of a ninth planet. One 

such, the wealthy amateur Percival Lowell, not only made the relevant calculations, but built 

himself a research quality observatory at Flagstaff to pursue this and his other obsession, the 

Martian “canals”.  He hired professional astronomers for his observatory: the director, Vesto 

Slipher, would later win renown for measuring the redshifts of nebulae. 

Lowell died in 1916, and there was a lengthy legal battle over the money he left to Flagstaff (his 

widow contested the will).  Eventually, the search for the object Lowell had called “Planet X” 

resumed in 1927, and Slipher hired a young amateur, Clyde Tombaugh (1906−1997) to con-

duct it.  Tombaugh conducted a carefully designed, methodical, professional search and found 

Pluto in February 1930.  Pluto, however, is not Lowell’s Planet X: it is too small and nowhere 

                                                             
4 Actually, neither Leverrier nor Adams had a very accurate orbit for Neptune. This is because both used 
the Titius-Bode law as a starting point for their calculations, and hence assumed Neptune had a ~ 39 AU. 
In fact, the law fails for Neptune, which has a = 30.1 AU.  Leverrier and Adams wound up with rather ec-
centric orbits which were approximately correct for Neptune’s then-current position, but would have di-
verged later. 



near massive enough to affect the orbit of Uranus.  It is now known that the observed discre-

pancies were actually the result of a slight error in Neptune’s mass, corrected after the Voyager 

flyby.  Therefore, the discovery of Pluto is not comparable to that of Neptune: it is more like 

those of Uranus and Ceres—an accidental discovery made because the observer in question was 

careful, conscientious and unlikely to overlook an unusual phenomenon.  As Louis Pasteur once 

said, “Fortune favours the prepared mind.” 

As with Ceres, Pluto was initially accepted as a major planet, but over time it became clear that 

there were many smaller objects in similar orbits: in fact, Pluto was a member of an outer as-

teroid belt, called the Kuiper Belt after the American astronomer Gerard Kuiper (though it was 

actually predicted earlier by the Irish astronomer Kenneth Edgeworth, and is occasionally 

referred to as the Edgeworth-Kuiper belt in recognition of this).  Because the interval between 

the discovery of Pluto and the recognition of the existence of the Kuiper belt was longer than 

that between Ceres and the asteroid belt, there was much more resistance to recategorising 

Pluto than there had been to relabelling Ceres (it may also be relevant that Clyde Tombaugh was 

liked and respected by the whole astronomical community, and nobody really wanted to de-

prive him of “his” planet).  Eventually, the discovery of Eris5—a trans-Neptunian object which 

was actually slightly more massive than Pluto—in 2005 brought the issue to a head: if Pluto is a 

planet, Eris must be one too, and we need to reconsider the status of Ceres (much the largest of 

the main-belt asteroids).  In 2006, the International Astronomical Union considered the matter, 

and produced a definition of “planet” which excludes members of asteroid belts (a planet must 

have gravitationally “cleared the neighbourhood around its orbit” of smaller bodies).  The new 

term “dwarf planet” was introduced for those objects which are massive enough to have settled 

into a near-spherical shape, but not massive enough to gravitationally displace other objects in 

similar orbits.  Currently there are five fully accredited dwarf planets in the solar system—Eris, 

Pluto, Makemake, Haumea and Ceres, the first four all being trans-Neptunian—but several other 

known trans-Neptunian objects almost certainly qualify, and the tally will doubtless rise. 

4.6 Summary: the solar system in the history of astronomy 

For most of its history, astronomy was the study of the solar system: from antiquity to the 19th 

century, the stars were basically landmarks (with a few exceptions such as the Chinese interest 

in transients, some of which were novae and supernovae outside the solar system), and the 

interesting phenomena were the moving bodies—the Sun, Moon and planets.  In the Western 

tradition, we start with simple record-keeping, move on to predictive mathematical models with 

the Babylonians, and then to physical models with the Greeks.  The increasing precision of ob-

servations led to increasing dissatisfaction with the models, and thence to several qualitative 

jumps in understanding: the move from geocentric to heliocentric models (attempted at least 

twice, though only successful in the 16th century, with Copernicus6), the abandonment of cir-

cular orbits (Kepler), and the successful unification of terrestrial and celestial physics (Newton). 

After Newton, the theoretical basis of the model did not change until Einstein’s general theory of 

relativity in 1915, but the solar system continued to dominate research until at least the late 

                                                             
5 The name Eris was chosen after the resolution of the debate: in August 2006, the body had the provi-
sional designation 2003 UB313 (using a standard convention for newly discovered minor planets).  The 
subsequent choice of Eris deliberately reflects the events its discovery had precipitated: Eris is the Greek 
goddess of strife and argument. 
6 One could argue that even the Copernican model never gained general acceptance: by the time the helio-
centric model became mainstream, it was Kepler’s model, not Copernicus’, that was the state of the art. 



19th century—arguably the early 20th.  The replacement of naked-eye observation by telescopes 

led to the discovery of smaller bodies, such as satellites of the major planets, and later asteroids; 

the challenge of dealing with Newtonian gravitation for more than two bodies attracted the at-

tention of leading mathematicians such as Euler and Laplace; the determination of the scale of 

the solar system, exemplified by the “solar parallax” (i.e. the accurate measurement of the astro-

nomical unit), continued to be an active topic of research until the radar distances to Venus and 

Mercury in the 1960s established it to extremely high precision. 

The development of spectroscopy in the early 19th century, especially following the establish-

ment of the Kirchhoff-Bunsen laws in 1859, coupled with the development of thermodynamics 

and kinetic theory and assisted by better telescopes, led to a shifting of emphasis from the solar 

system first to stars and then to more distant objects.  However, the development of space ex-

ploration from the late 1950s onwards stimulated solar-system astronomy once again—the pla-

nets and minor bodies of the solar system are the only astronomical objects we can physically 

visit.  Since 1995, planetary astronomy, and particularly theories of the formation and evolution 

of the solar system, has been revolutionised by the discovery of thousands of extrasolar planets: 

the properties of these planets comprehensively demolished the then-prevalent models of the 

formation and composition of planetary systems (which had expected that all extrasolar plane-

tary systems would resemble the solar system, with small terrestrial planets close to the star, 

large gas giants further out, and all planets in nearly circular orbits—none of this turns out to be 

right).  This is an example of a failure of induction: deriving general laws about planetary sys-

tems from the single example of our own solar system turned out to be most unsafe, however 

physically plausible those general laws had seemed to be. 

 


