Solve the Friedmann equation for the case of a matter-dominated flat universe.
The front cover equation gives $\dot{a}(t)^{2}=\frac{8 \pi G}{3 c^{2}}\left(\frac{\varepsilon_{\mathrm{m} 0}}{a(t)}\right)$ after removal of irrelevant terms.
Take the square root and collect terms to get $\sqrt{a} \mathrm{~d} a=H_{0} \mathrm{~d} t$, where for compactness I have written $H_{0}^{2}=8 \pi G \varepsilon_{\mathrm{m} 0} / 3 c^{2}$.

Then integrate this to obtain $\frac{2}{3} a^{3 / 2}=H_{0} t$.
Put in the condition that $a=1$ at $t=t_{0}$ to get $a=\left(t / t_{0}\right)^{2 / 3}\left(\right.$ and $\left.t_{0}=2 / 3 H_{0}\right)$.
Hence show that, in such a universe, the proper distance of an object at redshift z is

$$
d_{\mathrm{P}}=\frac{2 c}{H_{0}}\left(1-\frac{1}{\sqrt{1+z}}\right),
$$

where H_{0} is the present value of the Hubble parameter.
Taking the expression for the proper distance from part (a) and substituting $a=\left(t / t_{0}\right)^{2 / 3}$, we get $d_{\mathrm{P}}=c t_{0}^{2 / 3} \int_{t_{e}}^{t_{0}} t^{-2 / 3} \mathrm{~d} t$.

Doing the integral gives $d_{P}=3 c t_{0}\left(1-\left(t_{e} / t_{0}\right)^{1 / 3}\right)$
and substituting $a=\left(t / t_{0}\right)^{2 / 3}$ makes this $d_{\mathrm{P}}=3 c t_{0}\left(1-a^{-1 / 2}\right)$.
If we now write $a=1 /(1+z)$ and $3 t_{0}=2 / H_{0}$ we get the required answer.
In a flat, matter-dominated universe with $H_{0}=50 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$, a quasar is observed at redshift $z=4.0$.
(i) Calculate the proper distance of the quasar.

Put the numbers in the equation above to get $21.6 \mathrm{Gly}(6.6 \mathrm{Gpc})$.
(ii) Calculate the time at which the light from the quasar was emitted, and hence the lookback time for the quasar.
We know that $a=1 /(1+z)=0.2$, and that $t_{0}=2 / 3 H_{0}=13.0 \mathrm{Gyr}$.
Hence $t_{\mathrm{e}}=t_{0} a^{3 / 2}=1.2 \mathrm{Gyr}$

