Solve the Friedmann equation for the case of a matter-dominated flat universe. [3]

The front cover equation gives
$$\dot{a}(t)^2 = \frac{8\pi G}{3c^2} \left(\frac{\varepsilon_{m0}}{a(t)}\right)$$
 after removal of irrelevant terms. [½]

Take the square root and collect terms to get $\sqrt{a} da = H_0 dt$, where for compactness I have written $H_0^2 = 8\pi G \varepsilon_{m0}/3c^2$. [½]

Then integrate this to obtain $\frac{2}{3}a^{3/2} = H_0t.$ [1]

Put in the condition that a = 1 at $t = t_0$ to get $a = (t/t_0)^{2/3}$ (and $t_0 = 2/3H_0$). [1]

Hence show that, in such a universe, the proper distance of an object at redshift *z* is

$$d_{\rm P} = \frac{2c}{H_0} \left(1 - \frac{1}{\sqrt{1+z}} \right),$$

where H_0 is the present value of the Hubble parameter.

[3]

Taking the expression for the proper distance from part (a) and substituting $a = (t/t_0)^{2/3}$, we get $d_P = ct_0^{2/3} \int_{t_e}^{t_0} t^{-2/3} dt.$ [½]

Doing the integral gives
$$d_P = 3ct_0(1 - (t_e/t_0)^{1/3})$$
 [1]

and substituting $a = (t/t_0)^{2/3}$ makes this $d_P = 3ct_0(1 - a^{-1/2})$. [½]

If we now write a = 1/(1+z) and $3t_0 = 2/H_0$ we get the required answer. [1]

In a flat, matter-dominated universe with $H_0 = 50$ km s⁻¹ Mpc⁻¹, a quasar is observed at redshift z = 4.0.

(i)	Calculate the proper distance of the quasar.	[1]
	Put the numbers in the equation above to get 21.6 Gly (6.6 Gpc).	[1]
(ii)	Calculate the time at which the light from the quasar was emitted, and hence the look-	
	back time for the quasar.	[2]
	We know that $a = 1/(1+z) = 0.2$, and that $t_0 = 2/3H_0 = 13.0$ Gyr.	[1]
	Hence $t_{\rm e} = t_0 a^{3/2} = 1.2 {\rm Gyr}$	[1/2]
	and so the lookback time is $13.0 - 1.2 = 11.8$ Gyr.	[1/2]