By considering the path of a photon, show that the comoving proper distance between an object and the origin is given by

$$
r=c \int_{t_{e}}^{t_{o}} \frac{\mathrm{~d} t}{a(t)}
$$

where t_{e} is the time of emission and t_{o} is the time of observation.
The RW metric is $\mathrm{d} s^{2}=-c^{2} \mathrm{~d} t^{2}+a^{2}(t)\left(\mathrm{d} r^{2}+x_{k}^{2} \mathrm{~d} \Omega^{2}\right)$. A photon has $\mathrm{d} s^{2}=0$, because it travels at the speed of light (and therefore in a static universe we must have $\mathrm{d} r / \mathrm{d} t=c$) so for a radial trajectory the RW metric gives $c^{2} \mathrm{~d} t^{2}=a^{2}(t) \mathrm{d} r^{2}$, from which result follows immediately.

Hence show that, in an expanding universe, the observed light will be redshifted such that

$$
\frac{\lambda_{e}}{a\left(t_{e}\right)}=\frac{\lambda_{o}}{a\left(t_{o}\right)}
$$

where λ_{e} is the emitted wavelength and λ_{o} is the observed wavelength.
If a wave crest is emitted at time t_{e} and observed at time t_{0}, then the comoving proper distance r is given by $r=c \int_{t_{e}}^{t_{o}} \mathrm{~d} t / a(t)$ as in the question. Considering the emission and reception of the next wave crest, which is emitted at $t_{\mathrm{e}}+\lambda_{\mathrm{e}} / c$ and observed at $t_{0}+\lambda_{0} / c$, gives $r=c \int_{t_{e}+\lambda_{e} / c}^{t_{o}+\lambda_{o} / c} \mathrm{~d} t / a(t)$.

Now subtract from both integrals the common interval $c \int_{t_{e}+\lambda_{e} / c}^{t_{o}} \mathrm{~d} t / a(t)$, giving

$$
\begin{equation*}
c \int_{t_{e}}^{t_{e}+\lambda_{e} / c} \frac{\mathrm{~d} t}{a(t)}=c \int_{t_{o}}^{t_{0}+\lambda_{o} / c} \frac{\mathrm{~d} t}{a(t)} . \tag{1}
\end{equation*}
$$

But in this small time interval (assuming, reasonably, that $\lambda \ll c / H_{0}$) we can neglect the change in a, so this equation becomes

$$
\frac{c}{a\left(t_{e}\right)} \int_{t_{e}}^{t_{e}+\lambda_{e} / c} \mathrm{~d} t=\frac{c}{a\left(t_{o}\right)} \int_{t_{o}}^{t_{o}+\lambda_{o} / c} \mathrm{~d} t
$$

which integrates trivially to give the required answer.

