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Lectures 19&20: The Spherical Harmonics 
References:  Course Pack p.83-86, 125-128. 

In the last lecture, we stated that for spherical polar coordinates,    
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We also stated that solutions which are spherically symmetric are only a function of radius. Now we 
move to the more general case of solutions which depend on r, θ and φ.  In this case we need to consider 
the full form of ∇2, as given above. 

Spherical harmonics are very tricky to visualise in 3D. Whilst everyone can imagine both the ground state 
of a particle in an infinite quantum well and the 2D representation of 2 harmonics of a wave distribution 
in x and y interacting on a plate (as shown below) it is another matter entirely to visualise the spherical 
harmonics that you would expect in a 3D spherical potential well !!! 

 
 
 
 
 
 
 
 
 
 
 
 

To help visualisation we will base our discussion around the hydrogen atom and its various energy states. 
 

Bohr and Schrodinger both predicted that the energy levels of the H atom were:  2
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This means that the energy of an electron in any excited orbital depends purely on the energy level in 
which it resides. From your knowledge of chemistry, you will know that each energy level can contain 
more than one electron. These electrons must therefore have the same energy.  

An electron probability cloud (EPC) is a schematic representation of the likely position of an electron at 
any time. The figure below shows the EPCs corresponding to the ground state and some excited states of 
the hydrogen atom. As you can see for each energy level there are several different electron probability 
cloud distributions corresponding to the different 3D harmonic solutions at that level.  

In Quantum Mechanics we would say that there exists more than one quantum state corresponding to 
each energy level of the H atom. (Actually there are 2n2 different quantum states for the nth energy level). 

For the 1D case in Quantum Mechanics it was sufficient to define a quantum state fully using just one 
quantum number, e.g. n = 2 because our well extended only along the x axis. However in 2D and 3D we 
have to consider multiple axes within a 3D potential well, and since the probability density functions 
corresponding to the EPCs are mostly not radially symmetric, we must represent wavefunctions with the 
same energy but different eigenfunctions, using a unique set of quantum numbers. 

Of the 3 quantum numbers used to represent the special geometry of spherical waves in 3D, n is defined 
as the principal quantum number (and sets the value of the energy level of the wave). For each wave with 
quantum number n, there exist (n - 1) quantum states of  l from l = 0 to l = (n - 1) where l is defined as the 
orbital quantum number. So for example an electron in the 3rd excited state can be in (n=3, l=0), or (n=3, 
l=1) or (n=3, l=2) quantum states.  
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In addition each one of these quantum 
states has further states represented by 
another quantum number m defined as the 
magnetic quantum number. Whereas l is a 
positive integer, m is a positive or 
negative integer where | |m l≤ . This 
means that for a given l, there are 2l+1 
allowed values of m:   
m = 0, 1, 2,.. l± ± ± .  

(A 4th quantum number defines spin - an 
intrinsic property of the particle - but 
since this does not influence spatial 
geometry it will not be detailed here 
except to say that for every combination 
of n,l,m there also exists an additional 
spin up and spin down configuration. All 
these combine to make up the total 2n2 
different quantum states mentioned 
earlier.) 
 
Since the most important quantum numbers are n and l, we typically refer to them using a combination of 
the numerical value of n, and a letter to represent l as shown in the table below. 
 

Quantum number Standard 
terminology for n 

Standard 
terminology for l 

0  s 

1 1 (K shell) p 

2 2 (L shell) d 

3 3 (M shell) f 

All combinations of quantum numbers characterising the ground state, 1st and 2nd excited states are shown 
below. 

 
The electron in the hydrogen atom sees a spherically symmetric potential, so it is logical to use spherical 
polar coordinates to develop the Schrodinger equation.  
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In 3D Cartesian coordinates the time independent Schrodinger equation can be written as: 
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   in spherical polar coordinates, 

the time independent Schrodinger equation becomes: 
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It is well beyond the scope of this course to solve the 3D TISE but it can be shown (eventually) that the 
solution as usual can be written as: 

)()()(),,( φθφθ FPrRr =Ψ      

in which each function for the three spatial variables gives rise and is therefore associated with the three 
quantum numbers associated with the spatial geometry of the hydrogen energy levels. 
 
The function R(r) contains the solution to the radial part of the TISE and the principal quantum number 
dependency n. The function P(θ) determines the magnitude of the orbital angular momentum and defines 
the orbital quantum number dependency  l, and the function F(φ) contains the magnetic quantum number 
dependency  m. 
 
The full solution )()()(),,( φθφθ FPrRr =Ψ , for the ground state and first few excited states 
corresponding to each specific combination of quantum numbers is shown below. a0 is the first Bohr 
radius corresponding to the ground state of the H atom ….. 
 
Quantum numbers for 3D spatial 

geometry 
Normalised solution of the TISE for Hydrogen atom 
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Once we have the solution to the wave equation in 3D spherical polar coordinates we can deduce the 
probability function.  
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For example the probability density function in 3D for the ground state (1,0,0) is found as follows….. 

For the (1,0,0) harmonic mode  )()()(),,( φθφθ FPrRr =Ψ = 0
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It takes this comparatively simple form because the 1s state is spherically symmetric and therefore no 
angular terms appear. The radial probability density for the hydrogen ground state is obtained by 
multiplying the square of the wavefunction by a spherical shell volume element. 
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If we integrate over all space between  ∞≤≤ r0   
we can show that the total probability is 1. 
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It would be very interesting to plot the full 3D probability density distributions for each combination of 
quantum states. Unfortunately, distributions for non spherically symmetric solutions (i.e. p and d quantum 
states) would be a function of θ and φ as well as of radius r making them exceedingly difficult to plot. 

If instead we were to plot only the probability density functions for spherically symmetric solutions (i.e. s 
quantum states) for each quantum state n we would find the following distributions corresponding to the 
EPCs shown earlier for hydrogen.  

      
From Hyperphysics website:  http://hyperphysics.phy-astr.gsu.edu/Hbase/hydwf.html#c1 

 

The radial probability density distributions for other quantum states can be found at the above website. 

We must remember that these plots are 3 dimensional in so far as they describe the probability that an 
electron may be found at a specific location within a 3 dimensional spherical potential well. 
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The 3D representation of the 3d orbital shown as an EPCs for hydrogen earlier would look like….. 

 

 

This figure shows the various geometric configurations of 
the 3d orbitals in 3 dimensions. 

 

http://winter.group.shef.ac.uk/orbitron/AOs/3d/index.html 

 

 

 

 
Spherical Harmonics 
If, as we have done, we define the solution of a PDE expressed in spherical polar coordinates as 

)()()(),,( φθφθ FPrRr =Ψ  then we can say that the solution is comprised of a radially dependent 
function )(rR  and two angular dependent terms )()( φθ FP  which can be grouped together to form 
specific spherical harmonic solutions ),( φθm

lY .  Formally the spherical harmonics ),( φθm
lY  are the 

angular portion of the solution to Laplace's equation in spherical coordinates derived in the appendix. 
( , )m

lY θ φ  are found in the solution of any PDE which contains no explicit angular dependence. The 
derivation of their properties is beyond the scope of this course. As stated earlier, l is a positive integer, m 
is a positive or negative integer and | |m l≤ . This means that for a given l, there are 2l+1 allowed values 
of m:  m = 0, 1, 2,.. l± ± ± . Hence there are 2l + 1 different functions ( , )m

lY θ φ  for each value of l. The 
spherical harmonics ( , )m

lY θ φ  are listed in the appendix and can be directly compared with the )(θP  and 
)(φF  solutions for the wave function describing the electron orbitals of the hydrogen atom. 

Spherical harmonics are useful in an enormous range of applications, not just the solving of PDEs. It 
means a complicated function of θ and φ can be parameterised in terms of a set of solutions. The 
different harmonics can often be related to different physical phenomena or characteristics (e.g. in 
electrostatics, the potential due to a monopole, dipole, quadrupole, etc.). The shape of the earth (nearly 
but not exactly spherical), anisotropic potential variation, and the shape of a nucleus are just a few 
examples of non-spherical functions which it can be helpful to express as a sum over spherical harmonics.  
 
Summary 

1. Similarly to the solution in 1D and 3D Cartesian coordinates, the Laplace equation, wave 
equation, diffusion equation and Schrödinger equation (for a central potential) can be solved in 
spherical polar coordinates by separation of the variables. 

2. In all cases, the solutions are all of the form ( ) ( ) ( , )m
l lT t R r Y θ φ . The functions T(t) and  Rl(r) 

depend on the equation being solved, but for all the equations the angular dependence is given by 
the spherical harmonics ( , )m

lY θ φ . 
3. The functional form of the spherical harmonics can be looked up in a table when required.  
4. l is a positive integer, m may be positive or negative, and | |m l≤  so there are 2l+1 different 

( , )m
lY θ φ  for each value of l. 

This mathematics underlies not only the whole of atomic and nuclear physics but also many other 
applications including electrostatics, electromagnetic radiation, tides, solar oscillations, and many other 
problems. Next semester in atomic physics you will cover in more detail the radial spherical polar 
solutions of the Schrödinger equation for the hydrogen atom.  
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Appendix 
To demonstrate a solution of a PDE in 3D using spherical polar coordinates we will consider the Laplace 
equation, although the procedure is the same for other more complicated PDEs. 
 
The Laplace Equation, ∇2V = 0. 
As stated in lecture 18, the Laplace equation in spherical polar coordinates is written:  
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Let us look for solutions of the form V(r, θ, φ) = R(r) P(θ) F(φ), 

Substituting this into the PDE gives: 
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Multiplying both sides by r2sin2θ gives: 
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The first term on the left involves both r and θ so we have not yet fully separated the variables. However 
φ is involved only in the last term on the LHS. So we can say that for the equation to be true for all r,θ,φ, 
the last term must equal a constant. But should it be positive or negative? 

The potential must be single valued meaning that at a given point in space it must have just one value. 
Note that in spherical polar coordinates, the points (r, θ, φ) and (r, θ, φ + 2π) are the same point and so we 
must also have F(φ) =  F(φ + 2π). This means we need harmonic solutions, and thus a negative constant.  
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Usually the form  F(φ) = eimφ  is used. 
 

And we need periodicity of 2π,  i.e. need  sin(mφ) = sin(mφ + m2π), etc. – which is true if and only if m is 
integer. 
 

Replacing the φ  term with  –m2 , the equation above becomes  
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Dividing both sides by θ2sin  gives: 
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Now the first term involves only r and the second two terms only involve θ.  So to be true for all r and θ, 
the first term must equal a constant. If we call the constant B then we get the following ODES:   
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We are not going to solve the equation in θ ! It is an equation which has been studied by mathematicians 
and we are simply going to state its solutions!   

The solutions are found to diverge unless  B= − l(l+1)   where  l  is a positive integer and ml ≥ .   

Taking B= − l(l+1), the solutions P(θ) are real functions known as the associated Legendre functions, 
normally denoted by (cos )m

lP θ . Note that the functions depend on both l and m.  
 

We have  P(θ) = (cos )m
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The functions ),( φθm
lY  are known as the spherical harmonics.  

The coefficients are just normalization constants. 
Then the solutions to our equation are ),()()( φθm

lYrRrV = . 
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