MiniBooNE’s First Neutrino Oscillation Result

Morgan Wascko
Imperial College London

Particle Physics and Particle Astrophysics Seminar
Nov 14 2007
University of Sheffield
Outline

1. Motivation and Introduction
2. Description of the Experiment
3. Analysis Overview
4. Two Independent Oscillation Searches
5. First Results
6. Updates Since First Result
if neutrinos have mass...

a neutrino that is produced as a ν_μ

- (e.g. $\pi^+ \rightarrow \mu^+ \nu_\mu$)

might some time later be observed as a ν_e

- (e.g. $\nu_e n \rightarrow e^- p$)
Neutrino Oscillation

\[
\begin{pmatrix}
\nu_\mu \\
\nu_e
\end{pmatrix}
= \begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2
\end{pmatrix}
\]

- Consider only two types of neutrinos

- If weak states differ from mass states
 - i.e. \((\nu_\mu, \nu_e) \neq (\nu_1, \nu_2)\)

- Then weak states are mixtures of mass states

\[
|\nu_\mu(t)\rangle = -\sin \theta |\nu_1\rangle + \cos \theta |\nu_2\rangle
\]

\[
P_{osc}(\nu_\mu \rightarrow \nu_e) = |\langle \nu_e | \nu_\mu(t) \rangle|^2
\]

- Probability to find \(\nu_e\) when you started with \(\nu_\mu\)
Neutrino Oscillation

- In units that experimentalists like:

\[P_{\text{osc}}(\nu_\mu \rightarrow \nu_e) = \sin^2 2\theta \sin^2 \left(\frac{1.27 \Delta m^2 (\text{eV}^2) L (\text{km})}{E_\nu (\text{GeV})} \right) \]

- Fundamental Parameters
 - mass squared differences
 - mixing angle

- Experimental Parameters
 - \(L \) = distance from source to detector
 - \(E \) = neutrino energy

![Graph of neutrino oscillation probability](attachment:image.png)
Oscillation Signals

- **Solar** - Homestake, ... SNO
 - confirmed by reactors

- **Atmospheric** - Super-K, ...
 - confirmed by accelerators

- **Accelerator** - measured by LSND
 - unconfirmed!
The Problem

- Three different neutrino oscillation signals
- Three independent Δm^2
- Problem: We only need two!
- Explanation requires physics well beyond the standard model
- Is it true?
Verifying LSND

\[P(\nu_\mu \rightarrow \nu_e) = \sin^2 2\theta_{12} \sin^2 (1.27\Delta m_{12}^2 \frac{L}{E}) \]

- LSND interpreted as 2 \(\nu \) oscillation
- Verification requires same \((L/E)\) and high statistics
- Different systematics
- MiniBooNE chose higher \(L \) and \(E \)
- **Strategy**: search for \(\nu_e \) excess in \(\nu_\mu \) beam
TODAY: MiniBooNE’s initial results on testing the LSND anomaly

1- Generic search for ν_e excess in ν_μ beam

2- Analysis of data within 2 ν appearance only context
Outline

1. Motivation and Introduction
2. Description of the Experiment
3. Analysis Overview
4. Two Independent Oscillation Searches
5. First Results
6. Updates Since First Result
Target & Horn

Main components of Booster Neutrino Beam (BNB)
(96M and 146M+ pulses)

MiniBooNE Overview

Booster

Magnetic focusing horn

Decay region

Absorber

450 m dirt

Detector

\[\nu_e \rightarrow \nu_e \]

JL Raaf
Meson Production

- External meson production data
- HARP data (CERN)
- Parametrisation of cross-sections
- Sanford-Wang for pions
- Feynman scaling for kaons

MiniBooNE Overview
ν Flux

- 99.5% pure muon flavour
- 0.5% intrinsic ν_e
- Constrain ν_e content with ν_μ measurements

MiniBooNE Overview
MiniBooNE Overview

Detector
Neutrino Interactions

MiniBooNE is here

CC / NC quasi-elastic scattering (QE)
42% / 16%

CC / NC resonance production (1π)
25% / 7%
Mineral Oil Optics

- Production:
 - Cherenkov and scintillation
- Secondary:
 - Fluorescence and scattering (Raman, Rayleigh)

Extinction Rate for MiniBooNE Marcol 7 Mineral Oil
Track Images

- Muons
- full rings
- Electrons
- fuzzy rings
- Neutral pions
- double rings
PMT Hit Clusters

- PMT hits clusters in time form “subevents”
 - ν_μ events have 2 subevents
 - μ, followed by e
 - ν_e events have 1 subevent
- Simple cuts on subevents remove cosmic backgrounds
 - “pre-cuts”
Charged particles produce Cherenkov and scintillation light in oil.

PMTs collect photons, record t, Q.
Reconstruct tracks by fitting time and angular distributions.
Find position, direction, energy.
Detector Stability

Events per 1×10^{15} POT vs Week

Number of minutes

- Observed
- Predicted

Number of neutrino candidates in minute
1. Motivation and Introduction

2. Description of the Experiment

3. Analysis Overview
 1. Signal and Backgrounds
 2. Strategy

4. Two Independent Oscillation Searches

5. First Results

6. Updates Since First Result
Blind Analysis

Opened specific boxes with $<1\sigma \nu_e$ signal

<table>
<thead>
<tr>
<th>Initial Open Box</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>all non-beam-trigger data</td>
<td>calibration and MC tuning</td>
</tr>
<tr>
<td>0.25% random trigger</td>
<td>unbiased data studies</td>
</tr>
<tr>
<td>ν_μ CCQE</td>
<td>measure flux, $E_{\nu,QE}$, oscillation fit</td>
</tr>
<tr>
<td>ν_μ NCpi0</td>
<td>measure rate for MC tuning</td>
</tr>
<tr>
<td>ν_μ CC1pi+</td>
<td>check rate for MC</td>
</tr>
<tr>
<td>ν_μ-e elastic</td>
<td>check MC rate</td>
</tr>
<tr>
<td>“dirt”</td>
<td>measure MC rate</td>
</tr>
<tr>
<td>all events with $E_\nu > 1.4$ GeV</td>
<td>check MC rate</td>
</tr>
</tbody>
</table>

Second Step

| One closed signal box | explicitly sequester signal, 99% of data open |
---|---|---|
For robustness, MiniBooNE has performed two independent oscillation analyses.
Signal and Backgrounds

Stacked signal and backgrounds after ν_e event selection

Oscillation ν_e
Example oscillation signal
$\Delta m^2 = 1.2 \text{ eV}^2$
$\sin^2 2\theta = 0.003$
Fit for excess as a function of reconstructed ν_e energy
Signal and Backgrounds

STACKED SIGNAL AND BACKGROUND AFTER ν_e EVENT SELECTION

ν_e FROM K^+ AND K^0

- Use fit to kaon production data for shape.
- Use high energy ν_e and ν_μ in-situ data for normalisation cross-check.
Signal and Backgrounds

ν_e from μ⁺

\[p + Be \rightarrow \pi^+ \rightarrow \nu_\mu, \mu^+, \nu_e, \nu_\mu \mathrm{e}^+ \]

Measured with in-situ ν_μ CCQE sample
- Same ancestor π⁺ kinematics
- Most important background
 - Constrained to a few %

Stacked signal and backgrounds after ν_e event selection

Reconstructed E_ν (MeV)
Signal and Backgrounds

MisID ν_μ

- $\sim 46\% \pi^0$
 - Determined by clean π^0 measurement

- $\sim 16\% \Delta \gamma$ decay
 - π^0 measurement constrains

- $\sim 14\%$ “dirt”
 - Measure rate to normalise and use MC for shape

- $\sim 24\%$ other
 - Use ν_μ CCQE rate to normalise and MC for shape

stacked signal and backgrounds after ν_e event selection
Strategy

Incorporate in-situ data whenever possible

- MC tuning with calibration data
 - energy scale
 - PMT response
 - optical model

- MC tuning with neutrino data
 - cross section nuclear model parameters
 - \(\pi^0 \) rate constraint

- Constraining systematic errors with neutrino data
 - ratio method: \(\nu_e \) from \(\mu \) decay
 - combined fit to \(\nu_e \) and \(\nu_\mu \) data

Recurring theme: good data-MC agreement
MC Tuning

Good data/MC agreement

- Basic PMT hit distributions showing details of optical model
- Aggregate PMT hit distributions showing gross detector behaviour
MC Tuning

Good data/MC agreement

- Basic PMT hit distributions showing details of optical model
- Aggregate PMT hit distributions showing gross detector behaviour
Incorporate in-situ data whenever possible

- MC tuning with calibration data
 - energy scale
 - PMT response
 - optical model

- MC tuning with neutrino data
 - cross section nuclear model parameters
 - π^0 rate constraint

- Constraining systematic errors with neutrino data
 - ratio method: ν_e from μ decay
 - combined fit to ν_e and ν_μ data

Recurring theme: good data-MC agreement
\(\nu_\mu \) CCQE events

Used to measure flux and check \(E_\nu^{QE} \) reconstruction

\[
E_\nu^{QE} = \frac{1}{2 M_p - E_\mu + \sqrt{(E_\mu^2 - m_\mu^2)} \cos \theta_\mu}
\]

- 2 subevents: e, \(\mu \)
- Require e be located near end of \(\mu \) track

- \(E_\nu^{QE} \) resolution ~10%
Tuning CCQE MC

Q^2 distribution fit to tune empirical parameters of nuclear model (12C)

Data

χ^2/ndf = 4.7 / 13

good data-MC agreement in variables not used in tuning!
\(\pi^0 \) Mis-ID Backgrounds

- \(\pi^0 \)s are reconstructed outside mass peak if:
 - asymmetric decays
 - fake 1-ring
 - 1 of 2 photons exits
 - high momentum \(\pi^0 \) decays produce overlapping rings
The MC π^0 rate ($\text{flux} \times \text{xsec}$) is re-weighted to match the measurement in p_π bins.

good data-MC agreement in variables not used in tuning!
Incorporate in-situ data whenever possible

- MC tuning with calibration data
 - energy scale
 - PMT response
 - optical model

- MC tuning with neutrino data
 - cross section nuclear model parameters
 - π^0 rate constraint

- Constraining systematic errors with neutrino data
 - ratio method: ν_e from μ decay
 - combined fit to ν_e and ν_μ data

Recurring theme: good data-MC agreement
Analysis Strategy 1: Ratio Method

- MC predicts a range of ν_μ fluxes
- Use data/MC ratio of ν_μ CCQE events to re-weight parent π^+

ν_e from μ decay

- unweighted
- re-weighted

ν_e from μ decay
Analysis Strategy 2: Combined Fit

- For each E_ν bin i,
 \[\Delta_i = N_{i}^{DATA} - N_{i}^{MC} \]

- Raster-scan in Δm^2 and $\sin^2 2\theta_{\mu e}$ to calculate χ^2 over ν_e and ν_μ bins

\[
\chi^2 = \sum_{i=1}^{N_{bins}} \sum_{j=1}^{N_{bins}} \Delta_i M_{ij}^{-1} \Delta_j
\]

- Systematic error matrix includes uncertainties for ν_e and ν_μ
Error Matrix

\[M_{ij} = \frac{1}{N_{\alpha}} \sum_{\alpha=1}^{N_{\alpha}} (N_i^{\alpha} - N_{i}^{MC})(N_j^{\alpha} - N_{j}^{MC}) \]

- Use MC variations to study systematic uncertainties
- Vary underlying parameters and compare to “central value” MC
- Total error matrix is sum of individual matrices

Example of E_{ν}^{QE} distributions for several MC variations
Systematic Errors

<table>
<thead>
<tr>
<th>Neutrino flux predictions</th>
<th>constraint?</th>
</tr>
</thead>
<tbody>
<tr>
<td>meson production cross sections</td>
<td>✓</td>
</tr>
<tr>
<td>meson secondary interactions</td>
<td>✓</td>
</tr>
<tr>
<td>focussing horn current</td>
<td>✓</td>
</tr>
<tr>
<td>target and horn system alignment</td>
<td></td>
</tr>
<tr>
<td>Neutrino interaction cross sections</td>
<td></td>
</tr>
<tr>
<td>nuclear model</td>
<td>✓</td>
</tr>
<tr>
<td>rates and kinematics for relevant processes</td>
<td>✓</td>
</tr>
<tr>
<td>resonance width and branching fractions</td>
<td>✓</td>
</tr>
<tr>
<td>Detector modelling</td>
<td></td>
</tr>
<tr>
<td>optical model of light propagation</td>
<td>✓</td>
</tr>
<tr>
<td>PMT charge and time response</td>
<td>✓</td>
</tr>
<tr>
<td>electronics & DAQ model</td>
<td>✓</td>
</tr>
<tr>
<td>neutrino interactions in dirt surrounding detector</td>
<td>✓</td>
</tr>
</tbody>
</table>
Outline

1. Motivation and Introduction
2. Description of the Experiment
3. Analysis Overview
4. Two Independent Oscillation Searches
 1. Reconstruction and Event Selection
 2. Systematic Uncertainties
5. First Results
6. Updates Since First Result
2 Independent Searches

- Method 1: Track Based Analysis
 - Careful Reconstruction of particle tracks
 - Identify particle type by likelihood ratio
 - Use ratio method to constrain backgrounds
 - Strengths:
 - Relatively insensitive to optical model
 - Simple cuts on likelihood ratios

- Method 2: Boosted Decision Trees
 - Classify events using boosted decision trees
 - Cut on output variables to improve event separation
 - Use combined fit to constrain backgrounds
 - Strengths:
 - Combine weak variables to form strong classifier
 - Better constraints on backgrounds
Particle Identification

- Reconstruct under 3 hypotheses: μ-like, e-like and π^0-like
- ν_e particle ID cuts on likelihood ratios
 - chosen to maximise $\nu_\mu \rightarrow \nu_e$ oscillation sensitivity
e/µ Likelihood

- ν_μ CCQE data (with muon decay electron) compared to ν_μ data with no decay electrons ("All but signal")
- Removes most muon events
e/π^0 Likelihood

- “All but signal” (open) data and MC
- PID uses cuts on
 - likelihood ratio
 - reconstructed π^0 mass
- Opened sidebands before unblinding full data sample
Signal and background

• “Analysis region” defined to be 475-1250 MeV

• Signal efficiency higher at low energy

• Backgrounds higher there too...
Signal and background

- “Analysis region” defined to be 475-1250 MeV
- Signal efficiency higher at low energy
- Backgrounds higher there too...
Signal and background

Predicted ν_e energy distribution

<table>
<thead>
<tr>
<th>Energy Range</th>
<th>475-1250 MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu_e(\mu$ decay)</td>
<td>132</td>
</tr>
<tr>
<td>$\nu_e(K$ decay)</td>
<td>94</td>
</tr>
<tr>
<td>Radiative Δ</td>
<td>20</td>
</tr>
<tr>
<td>NCπ^0</td>
<td>62</td>
</tr>
<tr>
<td>Dirt</td>
<td>17</td>
</tr>
<tr>
<td>Other</td>
<td>33</td>
</tr>
<tr>
<td>Total</td>
<td>358</td>
</tr>
<tr>
<td>Signal</td>
<td>163</td>
</tr>
</tbody>
</table>
Uncertainties

<table>
<thead>
<tr>
<th>source</th>
<th>uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux from π^+ / μ^+ decay</td>
<td>6.2</td>
</tr>
<tr>
<td>Flux from K^+ decay</td>
<td>3.3</td>
</tr>
<tr>
<td>Flux from K^0 decay</td>
<td>1.5</td>
</tr>
<tr>
<td>Target and beam models</td>
<td>2.8</td>
</tr>
<tr>
<td>ν-cross section</td>
<td>12.3</td>
</tr>
<tr>
<td>NC π^0 yield</td>
<td>1.8</td>
</tr>
<tr>
<td>External interactions</td>
<td>0.8</td>
</tr>
<tr>
<td>Optical model</td>
<td>6.1</td>
</tr>
<tr>
<td>Electronics & DAQ model</td>
<td>7.5</td>
</tr>
<tr>
<td>constrained total</td>
<td>9.6</td>
</tr>
</tbody>
</table>

Note: “total” is **not** the quadrature sum -- errors are further reduced by constraints from ν_μ data.
• Sensitivity to oscillations

• “Primary” analysis chosen on the basis of this plot

• Chosen before opening the box!
Outline

1. Motivation and Introduction
2. Description of the Experiment
3. Analysis Overview
4. Two Independent Oscillation Searches
5. First Results
6. Updates Since First Result
Opening “The Box”

After applying all analysis cuts

• **Step 1:** Fit sequestered data to oscillation hypothesis
 ✓ Don’t return fit parameters
 ✓ Apply unreported parameters to MC, check diagnostic variables
 ✓ Return χ^2 for diagnostic variables

• **Step 2:** Open plots from Step 1
 • Plots chosen to be useful but not “revealing”

• **Step 3:** Report only the (unsigned) χ^2 from fit
 • No fit parameters returned

• **Step 4:** Compare EnuQE for data and MC
 • Blindness broken

• **Step 5:** Present results within two weeks
Training for a blind search

On March 26, 2007 we opened the box...
Opened box!

- Counting Experiment (475-1250 MeV)
- Expect 358 ± 19(stat) ± 35(sys)
- Observe 380
- Significance 0.55 σ
Exclusion Curve

- No evidence for $\nu_\mu \rightarrow \nu_e$

- 2ν appearance only oscillations

- Independent second analysis finds similar result

- Incompatible with LSND at 98% CL

- cf. KARMEN2 compatible at 64%

MiniBooNE First Result

- $\sin^2(2\theta)$ upper limit
- MiniBooNE 90% C.L.
- BDT analysis 90% C.L.
What Does It Mean?

• With the blind analysis, we have asked the question:

Do ν_μs oscillate directly to ν_es with $\Delta m^2 \sim 1 \text{eV}^2$, ala LSND?

• We have a clear answer:

NO

More work yet to do...
At lower energy...

- Lowering the energy threshold reveals ν_e excess
- Excess not consistent with LSND signal
- Currently under investigation
1. Motivation and Introduction
2. Description of the Experiment
3. Analysis Overview
4. Two Independent Oscillation Searches
5. First Results
6. Updates Since First Result
Low E checklist

- Data integrity checks
- Double check background calculations
- New backgrounds?
 - (i.e. not considered in original analysis)
 - N.B. If this is a background it may be relevant for other experiments searching for $\nu_\mu \rightarrow \nu_e$

- New physics?
- Looking at new/more data
Integrity checks

- Detector anomalies: none found
- Example: time distribution of ν_e events is flat
- Hand scanned all events: nothing pathological found

event display of typical ν_e
Muon Internal Brem

- Apply recon and PID to clean muon CCQE events
- Directly measure rate of final state muon ν_e backgrounds

Data-MC excess, but note the scale!

Statistical uncertainties only!
“Dirt” Backgrounds

- before box-opening, fit yielded
 - meas/pred = 1.00±0.15
- fit in different (open) sample yields
 - meas/pred = 1.08±0.12

Results from dirt-enhanced fits

visible energy (GeV)

dist to tank wall along track (cm)
Lower energy threshold

- More data should help
- Extended threshold to lower energy
 - required extension of systematics
- Excess persists below 300 MeV
- New bin is even more dominated by mis-ID ν_μ
Lower energy threshold

- More data should help
- Extended threshold to lower energy
 - required extension of systematics
- Excess persists below 300 MeV
- New bin is even more dominated by mis-ID ν_μ

[Graph showing data points and error bars with labels for MiniBooNE data, expected background, ν_μ background, and ν_e background. The graph highlights a new bin.]
Background Breakdown

<table>
<thead>
<tr>
<th>reconstructed ν energy bin (MeV)</th>
<th>200-300</th>
<th>300-475</th>
<th>475-1250</th>
</tr>
</thead>
<tbody>
<tr>
<td>total BG</td>
<td>284±25</td>
<td>274±21</td>
<td>358±35</td>
</tr>
<tr>
<td>ν_e intrinsic</td>
<td>26</td>
<td>67</td>
<td>229</td>
</tr>
<tr>
<td>ν_μ induced</td>
<td>258</td>
<td>207</td>
<td>129</td>
</tr>
<tr>
<td>NC π^0</td>
<td>115</td>
<td>76</td>
<td>62</td>
</tr>
<tr>
<td>NC Δ→Nγ</td>
<td>20</td>
<td>51</td>
<td>20</td>
</tr>
<tr>
<td>Dirt</td>
<td>99</td>
<td>50</td>
<td>17</td>
</tr>
<tr>
<td>other</td>
<td>24</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>DATA</td>
<td>375±19</td>
<td>369±19</td>
<td>380±19</td>
</tr>
</tbody>
</table>
Visible Energy & Angles

• Recall: two-body kinematics allow ν energy reconstruction from E_{lepton} and θ_{lepton}

$$E_{\nu}^{QE} = \frac{1}{2} \frac{2M_p E_\ell - m_\ell^2}{M_p - E_\ell + \sqrt{(E_\ell^2 - m_\ell^2)\cos\theta_\ell}}$$

• no anomalies in these distributions
E_ℓ & θ_ℓ in E_ν bins

Excess distributed among E_ν, $\cos \theta_\nu$ bins

At higher energy, data are well-described by predicted background
New BG? Physics?

Difficulty distinguishing single photons from electrons

- Photo-nuclear absorption
 - Can produce low energy “ν_e” events
- No effect on $E_\nu > 475$ MeV
- Anomaly-mediated photon production
- Both under active investigation
More data should help!

- Double check everything in MiniBooNE
- Same detector with different beam \Rightarrow NuMI
- Same beam with different detector \Rightarrow SciBooNE
Same Det. Diff. Beam

- MiniBooNE can see neutrinos from the NuMI beam
- Off-axis beam
 - 110 mrad
- Enriched ν_e sample
- Very different energy for ν_μ components
- Results presented Dec 14
- New experiment at Fermilab
- Near Detector in BNB
- Better at distinguishing photons from electrons
- Check MiniBooNE’s background estimates

Spokespeople:
T. Nakaya, Kyoto University
M.O. Wascko, Imperial College
• Three subdetectors:
 • SciBar, EC, MRD

• Data run started June 2006

• Now taking data (as I speak!)
Data Progress

- Expect 2.0×10^{20} POT total
- 1.0×10^{20} neutrino
- 1.0×10^{20} antineutrino
- Collected 0.54×10^{20} POT antineutrinos already
- Now running in neutrino mode
- Only 1 dead channel in $14,336 + 256 + 362$
What’s Next?

- MiniBooNE is publishing more papers:
 - Neutrino cross section measurements
 - Joint analysis of MiniBooNE, LSND and KARMEN data
 - More exotic oscillation analyses
 - ν_e disappearance
 - 2 or 3 sterile neutrinos with CP violation
 - MiniBooNE analysis coming soon
 - Results of NuMI-MB analysis very soon
 - Fermilab “Wine & Cheese” Seminar Dec 14
- MiniBooNE is pursuing $\bar{\nu}_e$ appearance search now
Summary

- MiniBooNE observes no evidence for $\nu_\mu \rightarrow \nu_e$ 2ν oscillations
- Incompatible with LSND $\overline{\nu}_\mu \rightarrow \nu_e$ oscillation signal at 98% CL
- Low energy excess under investigation
- More data coming soon

arXiv:0704.1500 [hep-ex]