MiniBooNE's First Neutrino Oscillation Result

Morgan Wascko Imperial College London

Particle Physics and Particle Astrophysics Seminar Nov 14 2007 University of Sheffield

- I. Motivation and Introduction
- 2. Description of the Experiment
- 3. Analysis Overview
- 4. Two Independent Oscillation Searches
- 5. First Results
- 6. Updates Since First Result

Motivation

if neutrinos have mass...

a neutrino that is produced as a V_{μ}

• (e.g.
$$\pi^+ \rightarrow \mu^+ \nu_{\mu}$$
)

might some time later be observed as a V_e

• (e.g.
$$v_e n \rightarrow e^- p$$
)

Imperial College

 $\overline{100}$

Imperial College London

100

Probability to find v_e $P_{osc}(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}) = |\langle \mathbf{v}_{e} | \mathbf{v}_{\mu}(t) \rangle|^{2}$ when you started with v_{μ}

Neutrino Oscillation

Sheffield PPPA Seminar

$$\begin{pmatrix} \mathbf{v}_{\mu} \\ \mathbf{v}_{e} \end{pmatrix} = \begin{pmatrix} \cos \theta \cdot \sin \theta \\ -\sin \theta \cos \theta \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \end{pmatrix}$$

$$\stackrel{\mathbf{v}_{1}}{\overbrace{\qquad \mathbf{v}_{e}}} \stackrel{\mathbf{v}_{e}}{\overbrace{\qquad \mathbf{v}_{e}}}$$

- Consider only two types of neutrinos
- If weak states differ from mass states
 - i.e. $(\nu_{\mu} \nu_{e}) \neq (\nu_{1} \nu_{2})$
- Then weak states are mixtures of mass states

 $|\mathbf{v}_{\mu}(t)\rangle = -\sin\theta|\mathbf{v}_{1}\rangle e^{-iE_{1}t} + \cos\theta|\mathbf{v}_{2}\rangle e^{-iE_{2}t}$

Neutrino Oscillation

• In units that experimentalists like:

$$P_{osc}(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}) = \sin^{2} 2\theta \sin^{2}$$

- Fundamental Parameters
 - mass squared differences
 - mixing angle
- Experimental Parameters
 - L = distance from source to detector
 - E = neutrino energy

 $1.27\Delta m^2 (\mathrm{eV}^2) L(\mathrm{km})$

 $E_{\rm v}({
m GeV})$

mperial College

Oscillation Signals

- Solar Homestake, ... SNO
 - confirmed by reactors
- Atmospheric Super-K, ...
 - confirmed by accelerators
- Accelerator measured by LSND
 - unconfirmed!

Imperial College

The Problem

- Three different neutrino oscillation signals
- Three independent Δm^2
- Problem:
 We only need two!
- Explanation requires physics well beyond the standard model
- $\Delta m^2 (eV^2)$ Reactor Limit $v_e \rightarrow v_e$ LSND v_µ→v_e 10 10 Atmospheric $v_{\mu} \rightarrow v_X$ 10 Solar MSW 10 $v_e \rightarrow v_X$ 10 10 -3 10 -2 10 -1 $\sin^2 2\theta$

• Is it true?

Imperial College

Imperial College London to years at time scence

Verifying LSND $P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}) = \sin^{2}2\theta_{12}\sin^{2}(1.27\Delta m_{12}^{2}\frac{L}{F})$

- LSND interpreted as 2 v oscillation
- Verification requires same (L/E) and high statistics
 - Different systematics
- MiniBooNE chose higher L and E
- Strategy: search for v_e excess in v_μ beam

Imperial College MiniBooNE Collaboration

A. A. Aguilar-Arevalo⁵, A. O. Bazarko¹², S. J. Brice⁷, B. C. Brown⁷, L. Bugel⁵, J. Cao¹¹, L. Coney⁵, J. M. Conrad⁵, D. C. Cox⁸, A. Curioni¹⁶, Z. Djurcic⁵, D. A. Finley⁷, B. T. Fleming¹⁶, R. Ford⁷, F. G. Garcia⁷, G. T. Garvey⁹, J. A. Green^{8,9}, C. Green^{7,9}, T. L. Hart⁴, E. Hawker¹⁵, R. Imlay¹⁰, R. A. Johnson³, P. Kasper⁷, T. Katori⁸, T. Kobilarcik⁷, I. Kourbanis⁷, S. Koutsoliotas², E. M. Laird¹², J. M. Link¹⁴, Y. Liu¹¹, Y. Liu¹, W. C. Louis⁹, K. B. M. Mahn⁵, W. Marsh⁷, P. S. Martin⁷, G. McGregor⁹, W. Metcalf¹⁰, P. D. Meyers¹², F. Mills⁷, G. B. Mills⁹, J. Monroe⁵, C. D. Moore⁷, R. H. Nelson⁴, P. Nienaber¹³, S. Ouedraogo¹⁰, R. B. Patterson¹², D. Perevalov¹, C. C. Polly⁸, E. Prebys⁷, J. L. Raaf³, H. Ray⁹, B. P. Roe¹¹, A. D. Russell⁷, V. Sandberg⁹, R. Schirato⁹, D. Schmitz⁵, M. H. Shaevitz⁵, F. C. Shoemaker¹², D. Smith⁶, M. Sorel⁵, P. Spentzouris⁷ I. Stancu¹, R. J. Stefanski⁷, M. Sung¹⁰, H. A. Tanaka¹², R. Tayloe⁸, M. Tzanov⁴, M. O. Wascko¹⁰, R. Van de Water⁹, D. H. White⁹, M. J. Wilking⁴, H. J. Yang¹¹, G. P. Zeller⁵, E. D. Zimmerman⁴

¹University of Alabama, Tuscaloosa, AL 35487 ²Bucknell University, Lewisburg, PA 17837 ³University of Cincinnati, Cincinnati, OH 45221 ⁴University of Colorado, Boulder, CO 80309 ⁵Columbia University, New York, NY 10027 ⁶Embry Riddle Aeronautical University, Prescott, AZ 86301 ⁷Fermi National Accelerator Laboratory, Batavia, IL 60510 ⁸Indiana University, Bloomington, IN 47405 ⁹Los Alamos National Laboratory, Los Alamos, NM 87545 ¹⁰Louisiana State University, Baton Rouge, LA 70803 ¹¹University of Michigan, Ann Arbor, MI 48109 ¹² Princeton University, Princeton, NJ 08544 ¹³Saint Mary's University of Minnesota, Winona, MN 55987 ¹⁴ Virginia Polytechnic Institute & State University. Blacksburg, VA 24061 ¹⁵Western Illinois University, Macomb. IL 61455 ¹⁶Yale University, New Haven, CT 06520

TODAY: MiniBooNE's initial results on testing the LSND anomaly I- Generic search for v_e excess in v_{μ} beam 2-Analysis of data within 2 v appearance only context

London

- I. Motivation and Introduction
- 2. Description of the Experiment
- 3. Analysis Overview
- 4. Two Independent Oscillation Searches
- 5. First Results
- 6. Updates Since First Result

Sheffield PPPA Seminar

Imperial College London to years of Uning science

Main components of Booster Neutrino Beam (BNB) (96M and 146M+ pulses)

Meson Production

Imperial College

- External meson production data
 - HARP data (CERN)
- Parametrisation of crosssections
 - Sanford-Wang for pions
 - Feynman scaling for kaons

- 99.5% pure muon flavour
- 0.5% intrinsic v_e
- Constrain v_e content with ν_{μ} measurements

Magnetic

focusing horn

.∡ber

dirt

region

Sheffield PPPA Seminar

Booster

Detector

Imperial College London

100 Detector

Sheffield PPPA Seminar

^{Noo} Neutrino Interactions

Imperial College

Mineral Oil Optics

- Production:
 - Cherenkov and scintillation
- Secondary:
 - Fluorescence and scattering (Raman, Rayleigh)

Extinction Rate for MiniBooNE Marcol 7 Mineral Oil

PMT Hit Clusters

- PMT hits clusters in time form "subevents"
- v_{μ} events have 2 subevents
 - μ , followed by e
- v_e events have I subevent

 Simple cuts on subevents remove cosmic backgrounds

• "pre-cuts"

¹⁰⁰ Track Reconstruction

Charged particles produce Cherenkov and scintillation light in oil

PMTs collect photons, record t,Q

Reconstruct tracks by fitting time and angular distributions

Find position, direction, energy

Detector Stability

Events per 1e15 POT vs Week

Imperial College

- I. Motivation and Introduction
- 2. Description of the Experiment
- 3. Analysis Overview
 - I. Signal and Backgrounds
 - 2. Strategy
- 4. Two Independent Oscillation Searches
- 5. First Results
- 6. Updates Since First Result

Imperial College 100 years of living science

Blind Analysis

Opened specific boxes with <10 v_e signal	
Initial Open Box	Use
all non-beam-trigger data	calibration and MC tuning
0.25% random trigger	unbiased data studies
ν_{μ} CCQE	measure flux, E_v^{QE} , oscillation fit
v_{μ} NCpi0	measure rate for MC tuning
ν _μ CCIpi+	check rate for MC
ν_{μ} -e elastic	check MC rate
"dirt"	measure MC rate
all events with $E_v > 1.4 \text{ GeV}$	check MC rate
Second Step	
One closed signal box	explicitly sequester signal, 99% of data open
O.Wascko Sheffield PPPA Seminar	

Signal and Backgrounds

Signal and Backgrounds

Signal and Backgrounds

Strategy

Incorporate in-situ data whenever possible

- MC tuning with calibration data
 - energy scale
 - PMT response
 - optical model
- MC tuning with neutrino data
 - cross section nuclear model parameters
 - π^0 rate constraint
- Constraining systematic errors with neutrino data
 - ratio method: v_e from μ decay
 - combined fit to v_e and v_{μ} data

"I think you should be more explicit here in step two."

Recurring theme: good data-MC agreement

mperial College

 \bigcirc

Imperial College London to years of Uning science

MC Tuning

Good data/MC agreement

- Basic PMT hit distributions showing details of optical model
- Aggregate PMT hit distributions showing gross detector behaviour

Imperial College London 100 years of living science

MC Tuning 1

Good data/MC agreement

- Basic PMT hit distributions showing details of optical model
- Aggregate PMT hit distributions showing gross detector behaviour

Strategy

Incorporate in-situ data whenever possible

- MC tuning with calibration data
 - energy scale
 - PMT response
 - optical model
- MC tuning with neutrino data
 - cross section nuclear model parameters
 - π^0 rate constraint
- Constraining systematic errors with neutrino data
 - ratio method: v_e from μ decay
 - combined fit to v_e and v_{μ} data

"I think you should be more explicit here in step two."

Recurring theme: good data-MC agreement

mperial College

 \bigcirc

100

 v_{μ} CCQE events

Used to measure flux and check $E_{\rm v}{}^{QE}$ reconstruction

$$E_{v}^{QE} = \frac{1}{2} \frac{2M_{p}E_{\mu} - m_{\mu}^{2}}{M_{p} - E_{\mu} + \sqrt{(E_{\mu}^{2} - m_{\mu}^{2})}\cos\theta_{\mu}}$$

- 2 subevents: e, μ
 - Require e be located near end of μ track

U T. Katori ✤ Data 8000 Monte Carlo 7000 6000 5000 4000 3000 2000 1000 **0** 0.2 0.4 0.6 1.2 v_{μ} CCQE reconstructed E_v (GeV)

Tuning CCQE MC

Q² distribution fit to tune empirical parameters of nuclear model (¹²C)

good data-MC agreement in variables not used in tuning!

Imperial College

^ππ⁰ Mis-ID Backgrounds

 π^0 s are reconstructed outside mass peak if:

- asymmetric decays fake I-ring
- I of 2 photons exits
- high momentum π⁰ decays produce overlapping rings

Imperial College

Tuning $\pi^0 MC$

Imperial College

Strategy

Incorporate in-situ data whenever possible

- MC tuning with calibration data
 - energy scale
 - PMT response
 - optical model
- MC tuning with neutrino data
 - cross section nuclear model parameters
 - π^0 rate constraint
- Constraining systematic errors with neutrino data
 - ratio method: v_e from μ decay
 - combined fit to v_e and v_{μ} data

"I think you should be more explicit here in step two."

Recurring theme: good data-MC agreement

mperial College

 \bigcirc

ondon

Analysis Strategy I:

Ratio Method

Use data/MC ratio of v_{μ} CCQE events to re-weight parent π^+

Analysis Strategy 2:

Combined Fit

• For each Ev bin i,

$$\Delta_i = N_i^{DATA} - N_i^{MC}$$

• Raster-scan in Δm^2 and $\sin^2 2\theta_{\mu e}$ to calculate χ^2 over ν_e and ν_μ bins

$$\chi^2 = \sum_{i=1}^{N_{bins}} \sum_{j=1}^{N_{bins}} \Delta_i \mathcal{M}_{ij}^{-1} \Delta_j$$

• Systematic error matrix includes uncertainties for ν_e and ν_μ

 $v_e v_\mu$

 \mathbf{v}_{e}

- Use MC variations to study systematic uncertainties
- Vary underlying parameters and compare to "central value" MC

• Total error matrix is sum of individual matrices

Systematic Errors

Neutrino flux predictions	
meson production cross sections	\checkmark
meson secondary interactions	\checkmark
focussing horn current	
target and horn system alignment	
Neutrino interaction cross sections	
nuclear model	\checkmark
rates and kinematics for relevant processes	\checkmark
resonance width and branching fractions	\checkmark
Detector modelling	
optical model of light propagation	\checkmark
PMT charge and time response	\checkmark
electronics & DAQ model	\checkmark
neutrino interactions in dirt surrounding detector	\checkmark

- I. Motivation and Introduction
- 2. Description of the Experiment
- 3. Analysis Overview
- 4. Two Independent Oscillation Searches
 - I. Reconstruction and Event Selection
 - 2. Systematic Uncertainties
- 5. First Results
- 6. Updates Since First Result

² Independent Searches

Method I: Track Based Analysis

- Careful Reconstruction of particle tracks
- Identify particle type by likelihood ratio
- Use ratio method to constrain backgrounds
- Strengths:
 - Relatively insensitive to optical model
 - Simple cuts on likelihood ratios

Method 2: Boosted Decision Trees

- Classify events using boosted decision trees
- Cut on output variables to improve event separation
- Use combined fit to constrain backgrounds
- Strengths:
 - Combine weak variables to form strong classifier
 - Better constraints on backgrounds

Cross-check Analysis

Primary

Analysis

mperial College

Particle Identification

- Reconstruct under 3 hypotheses: μ -like, e-like and π^0 -like
- v_e particle ID cuts on likelihood ratios
 - chosen to maximise $v_{\mu} \rightarrow v_{e}$ oscillation sensitivity

Imperial College

e/µ Likelihood

- v_{μ} CCQE data (with muon decay electron) compared to v_{μ} data with no decay electrons ("All but signal")
- Removes most muon events

- "All but signal" (open) data and MC
- PID uses cuts on
 - likelihood ratio
 - reconstructed π⁰
 mass
- Opened sidebands before unblinding full data sample

 $\mathbb{O}\mathbb{O}$

¹⁰⁰ Signal and background

- "Analysis region" defined to be 475-1250 MeV
- Signal efficiency higher at low energy
- Backgrounds higher there too...

Imperial College London

¹⁰⁰ Signal and background

- "Analysis region" defined to be 475-1250 MeV
- Signal efficiency higher at low energy
- Backgrounds higher there too...

¹⁰⁰ Signal and background

Stacked backgrounds: V_{e}^{K} v_{e}^{μ} π^{0} dirt events	$v_e(\mu \text{ decay})$ $v_e(K \text{ decay})$ Radiative Δ NC π^0	32 94 20 62
Δ→ Νγ other ···· LSND best-fit signal Δm²=1.2 eV² sin²(20)=0.003	Dirt Other	02 17 33
	Total	358
1000 1200 1400 cted E _v (MeV)	Signal	163
	<u> </u>	

475-1250 MeV

Predicted V_e ener

Uncertainties

source	uncertainty (%)
Flux from π^+/μ^+ decay	6.2
Flux from K ⁺ decay	3.3
Flux from K ⁰ decay	I.5
Target and beam models	2.8
V-cross section	12.3
NC π ⁰ yield	1.8
External interactions	0.8
Optical model	6.1
Electronics & DAQ model	7.5
constrained total	9.6

Note:

"total" is **not** the quadrature sum-- errors are further reduced by constraints from V_{μ} data

Imperial College

Imperial College London to years of Uning science

Sensitivity

- Sensitivity to oscillations
- "Primary" analysis chosen on the basis of this plot
 - Chosen before opening the box!

- I. Motivation and Introduction
- 2. Description of the Experiment
- 3. Analysis Overview
- 4. Two Independent Oscillation Searches
- 5. First Results
- 6. Updates Since First Result

Opening "The Box"

After applying all analysis cuts

- Step I: Fit sequestered data to oscillation hypothesis
 - Don't return fit parameters
 - Apply unreported parameters to MC, check diagnostic variables
 - \checkmark Return χ^2 for diagnostic variables
- Step 2: Open plots from Step I
 - Plots chosen to be useful but not "revealing"
- Step 3: Report only the (unsigned) χ^2 from fit
 - No fit parameters returned
- Step 4: Compare EnuQE for data and MC
 - Blindness broken

• Step 5: Present results within two weeks

mperial College

Training for a blind search

MOW c. 2002 (blinded)

On March 26, 2007 we opened the box...

Opened box!

Imperial College

OO

 $\overline{100}$

Exclusion Curve

- No evidence for $v_{\mu} \rightarrow v_{e}$ 2v appearance only oscillations
- Independent second analysis finds similar result

- Incompatible with LSND at 98% CL
 - cf. KARMEN2 compatible at 64%

¹⁰⁰ What Does It Mean?

• With the blind analysis, we have asked the question:

Do $v_{\mu}s$ oscillate directly to v_es with $\Delta m^2 \sim IeV^2$, ala LSND?

• We have a clear answer:

NO

More work yet to do...

At lower energy...

- Lowering the energy threshold reveals v_e excess
- Excess not consistent with LSND signal
- Currently under investigation

Imperial College

- I. Motivation and Introduction
- 2. Description of the Experiment
- 3. Analysis Overview
- 4. Two Independent Oscillation Searches
- 5. First Results
- 6. Updates Since First Result

- Data integrity checks
- Double check background calculations
- New backgrounds?
 - (i.e. not considered in original analysis)
 - N.B. If this is a background it may be relevant for other experiments searching for $v_{\mu} \rightarrow v_{e}$
- New physics?
- Looking at new/more data

 $\overline{100}$

Integrity checks

Detector anomalies: none found

Imperial College

M.O.Wascko

OO

- Example: time distribution of v_e events is flat
- Hand scanned all events: nothing pathological found

61

1000

Imperial College London to years of living science

Muon Internal Brem

- Apply recon and PID to clean muon CCQE events
- Directly measure rate of final state muon V_e backgrounds

"Dirt" Backgrounds

- before box-opening, fit yielded
 - meas/pred = 1.00 ± 0.15
- fit in different (open) sample yields
 - meas/pred = 1.08±0.12

results from dirt-enhanced fits

Imperial College London

M.O.Wascko

Imperial College

Lower energy threshold

- More data should help
- Extended threshold to lower energy
 - required extension of systematics
- Excess persists below
 300 MeV
- New bin is even more dominated by mis-ID ν_{μ}

Dower energy threshold

- More data should help
- Extended threshold to lower energy
 - required extension of systematics
- Excess persists below 300 MeV
- New bin is even more dominated by mis-ID ν_{μ}

Imperial College

Background Breakdown

	reconstructed ∨ energy bin (MeV)		
	200-300	300-475	475-1250
total BG	284±25	274±21	358±35
V _e intrinsic	26	67	229
v_{μ} induced	258	207	129
NC π ⁰	115	76	62
NC ∆→NY	20	51	20
Dirt	99	50	17
other	24	30	30
DATA	375±19	369±19	380±19

Imperial College

Visible Energy & Angles

• Recall: two-body kinematics allow v energy reconstruction from E_{lepton} and θ_{lepton}

$$E_{
m v}^{QE} \;=\; rac{1}{2} rac{2M_{p}E_{\ell}-m_{\ell}^{2}}{M_{p}-E_{\ell}+\sqrt{(E_{\ell}^{2}-m_{\ell}^{2})}cos heta_{\ell}}$$

no anomalies in these distributions

Imperial College

M.O. Wascko

Imperial College London

events / bin / (5.6E20 POT)

100

$E_{\ell} \& \theta_{\ell}$ in E_{v} bins

200< E <300 MeV

Excess distributed among E_{ℓ} , $\cos\theta_{\ell}$ bins

250

300

350

visible energy (MeV)

400

 $300 \text{ MeV} < E_{v}^{\text{rec}} < 475 \text{ MeV}$

Monte Carlo (syst. error)

data (stat. error)

450

500

550

____ v_ only

v only

475< E <3000 MeV

At higher energy, data are welldescribed by predicted background

Sheffield PPPA Seminar

100

New BG? Physics?

Photonuclear cross section

20

Difficulty distinguishing single photons from electrons

- Photo-nuclear absorption
 - Can produce low energy "v_e" events
 - No effect on E_v >475 MeV
- Anomaly-mediated photon production
 - arXiv:0708.1281[hep-ex]
- Both under active investigation

¹⁰⁰More data should help!

Same detector with different beam ⇒NuMI

 Same beam with different detector ⇒SciBooNE

Same Det. Diff. Beam

- MiniBooNE can see neutrinos from the NuMI beam
- Off-axis beam
 - 110 mrad
- Enriched v_e sample
 - Very different energy for v_{μ} components
- Results presented Dec 14

Imperial College

Same Beam Diff. Det. SciBooNE

- New experiment at Fermilab
- Near Detector in BNB

Imperial College

London

- Better at distinguishing photons from electrons
 - Check MiniBooNE's background estimates

<u>Spokespeople</u>: T. Nakaya, Kyoto University M.O. Wascko, Imperial College
T2K

Three subdetectors: SciBar, EC, MRD

K. Hiraide

Data Progress

- Expect 2.0e20 POT total
 - 1.0e20 neutrino
 - 1.0e20 antineutrino
- Collected 0.54e20 POT antineutrinos already
- Now running in neutrino mode
 - Only I dead channel in 14,336+256+362

Imperial College London to years of living science

- MiniBooNE is publishing more papers:
 - Neutrino cross section measurements
 - Joint analysis of MiniBooNE, LSND and KARMEN data
 - More exotic oscillation analyses
 - v_e disappearance
 - 2 or 3 sterile neutrinos with CP violation
 - MiniBooNE analysis coming soon
 - Results of NuMI-MB analysis very soon
 - Fermilab "Wine & Cheese" Seminar Dec 14
- MiniBooNE is pursuing \overline{v}_e appearance search now

Summary

- MiniBooNE observes no evidence for $v_{\mu} \rightarrow v_e 2v$ oscillations
- Incompatible with LSND $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ oscillation signal at 98% CL
- Low energy excess under investigation
 - More data coming soon

MiniBooNE First Result

Imperial College

OO