

QCD and Electroweak physics at the LHC

Arthur M. Moraes

University of Sheffield, UK

(on behalf of the ATLAS collaboration)

HEP and PA group seminar – Sheffield, 2nd April 2003

LHC (Large Hadron Collider):

- p-p collisions at $\sqrt{s} = 14 \text{TeV}$
- bunch crossing every 25 ns
 (40 MHz)

Ø low-luminosity: L ≈ 10³³cm⁻²s⁻¹ (∠ ≈ 10 fb⁻¹/year)

Ø high-luminosity: L ≈ 10³⁴cm⁻²s⁻¹ (∠ ≈ 100 fb⁻¹/year)

Process	σ (nb)	Events/year (<i>L</i> = 10 fb ⁻¹)
$W \rightarrow ev$	15	~ 10 ⁸
$Z \rightarrow e^+ e^-$	1.5	~ 107
tī	0.8	~ 10 ⁷
Inclusive jets p _T > 200 GeV	100	~ 10 ⁹

large statistics: small statistical error!

Production cross section and dynamics are largely controlled by QCD.

Mass reach up to ~ 5 TeV

Test QCD predictions and perform precision measurements.

ATLAS: A Toroidal LHC AparatuS

• Multi-purpose detector coverage up to $|\eta| = 5$; design to operate at L= 10³⁴ cm⁻²s⁻¹

Inner Detector (tracker)

Si pixel & strip detectors + TRT; 2 T magnetic field; coverage up to $|\eta| < 2.5$.

• Calorimetry

highly granular LAr EM calorimiter ($|\eta| < 3.2$); hadron calorimeter – scintillator tile ($|\eta| < 4.9$).

• Muon Spectrometer air-core toroid system.

Lepton energy scale: precision of 0.02% ($Z \rightarrow ll$)

Jet energy scale: precision of 1% ($W \rightarrow jj; Z \rightarrow ll + jets$)

Absolute luminosity: precision $\leq 5\%$ (machine, optical theorem, rate of known processes)

QCD and EW physics at LHC

QCD Physics at the LHC

- ⁿ Precision tests & measurements in unexplored kinematic region.
- ⁿ Jet physics.
- **Parton luminosities and p.d.f.'s** (high-Q² processes at LHC: parton-parton collider).
- **Direct photon** production ($f_g(x)$, background to $H \rightarrow \gamma \gamma$, parton dynamics).
- **Measurement** of the α_s at very large scales.
- Background processes: multi-parton interaction, minimum-bias and the underlying event.
- <u>Conclusion: QCD studies.</u>

LHC Parton Kinematics

S Essentially all physics at LHC are connected to the interactions of quarks and gluons at large transferred momentum.

S This requires a solid understanding of QCD.

S Accurate measurements of SM cross sections at the LHC will further constrain the pdf's.

S The kinematic acceptance of the LHC detectors allows a large range of x and Q² to be probed.

QCD and EW physics at LHC

Jet physics

• Test of pQCD in an energy regime never probed!

• The measurement of di-jets and their properties (E_T and $\eta_{1,2}$) can be used to **constrain p.d.f.'s**.

• Inclusive jet cross section: $\alpha_{s}(M_{z})$ measurement with **10% accuracy**.

(can be reduced by using the 3-jet to 2-jet production)

 $f = 30 \, \text{fb}^{-1}$

- Multi-jet production is important for several physics studies:
 - a) tt production with hadronic final states
 - b) Higgs production in association with tt and bb
 - c) Search for R-parity violating SUSY (8 12 jets).
- Systematic errors:

Ø jet algorithm,

- Ø calorimeter response (jet energy scale),
- Ø jet trigger efficiency,

LVL1, jet-E_T 180 (290) GeV at low (high) luminosity, $|\eta| < 3.2$

- Ø luminosity (dominant uncertainty 5% -10%),
- Ø the underlying event.

At the LHC the **statistical** uncertainties on the jet cross-section will be **small**.

QCD and EW physics at LHC

Jet E _T	N _{events}
> 1 TeV	4 x 10⁵
> 2 TeV	3 x 10 ³
> 3 TeV	40

Measuring parton luminosities and p.d.f.'s

 $N_{events}(pp \to X) = L_{p-p} \times pdf(x_1, x_2, Q^2) \times \sigma_{theory}(q, \overline{q}, g \to X)$

Uncertainties in **p-p luminosity** (\pm 5%) and **p.d.f.'s** (\pm 5%) will limit measurement uncertainties to \pm 5% (at best).

• For high Q² processes LHC should be considered as a parton-parton collider instead of a p-p collider.

• Using only relative cross section measurements, might lead eventually to accuracies of $\pm 1\%$.

$q\bar{q}~(u,d)$ (high-mass DY lepton pairs and other processes dominated by $q\bar{q}$)	W [±] and Z leptonic decays	 precise measurements of mass and couplings; huge cross-sections (~nb); small background. x-range: 0.0003 - 0.1 ± 1% 	
g (high-Q ² reactions involving gluons)	γ -jet , Z-jet, W±-jet	n γ-jet studies: γ p _T > 40 GeV n x-range: 0.0005 – 0.2 n γ-jet events: γ p _T ~ 10-20 GeV n low-x: ~ 0.0001 n ±1%	
s, c, b	γc, γb, sg→Wc	n quark flavour tagged γ -jet final states; n use inclusive high-p _T μ and b-jet identification (lifetime tagging) for c and b; n use μ to tag c-jets; n 5-10% uncertainty for x-range: 0.0005 – 0.2	
. M. Moraes	OCD and	EW physics at LHC Sheffield, 2 nd Ap	pril 200

Direct photon production

Understanding photon production:

 \oslash Higgs signals (H $\rightarrow\gamma\gamma$) & background;

Ø prompt-photon can be used to study the underlying parton dynamics;

 \oslash gluon density in the proton, $f_g(x)$ (requires good knowledge of α_s)

Production mechanism:						
qg→γq	dominant	(QCD	Compton			
qq→γg	geologia (

Background: mainly related to fragmentation (non-perturbative QCD)

Isolation cut: reduces background from fragmentation (π^0)

ATLAS: high granularity calorimeters ($|\eta| < 2.5$) allow good background rejection.

Low luminosity run: the photon efficiency accuracy is more than 80% (LAr calorimeter).

QCD and EW physics at LHC

Determination of α_s : scale dependence

• Verification of the running of α_S : check of QCD at the smallest distance scales:

 $\varnothing \alpha_{\rm S}$ = 0.118 at 100 GeV

 ${\it \oslash}~\alpha_{\rm S}{\sim}$ 0.082 at 4 TeV

• However, measurements of α_s will not be able to compete with precision measurements from e⁺e⁻ and DIS (gluon distribution).

Differential cross-section for inclusive jet production (NLO)

 $\frac{d\sigma}{dE_T} \sim \alpha_s^{2}(\mu_R)A(E_T) + \alpha_s^{3}(\mu_R)B(E_T)$

• A and B are calculated using p.d.f.'s.

• Fitting this expression to the measured inclusive crosssection gives for each E_T bin a value of $\alpha_S(E_T)$.

Systematic uncertainties:
Ø p.d.f. set (±3%),
Ø parametrization of A and B,
Ø renormalization and factorization scale (±7%).

Multiple parton interactions

• AFS, UA2 and more recently (and crucially!) CDF, have measured **double parton** interactions.

$$\boldsymbol{\sigma}_{D}\left(\boldsymbol{p}_{T}^{cut}\right) = m \frac{\boldsymbol{\sigma}_{A} \boldsymbol{\sigma}_{B}}{2\boldsymbol{\sigma}_{eff}}$$

 $\sigma_{\rm eff} = 14.5 \pm 1.7 \text{ mb}$

 σ_{eff} has a geometrical origin;

 parton correlation on the transverse space;

 it is energy and cut-off independent.

- σ_D decreases as $\mathbf{p}_T \rightarrow \infty$ and grows as $\mathbf{p}_T \rightarrow \mathbf{0}$.
- $\sigma_{\rm D}$ increases faster with **s** as compared to $\sigma_{\rm S}$.

Multiple parton collisions are **enhanced** at the LHC!

• Source of background:

```
Ø WH+X→ (k) bb+X,
Ø Zbb→ (k) bb+X,
Ø W + jets, Wb + jets and Wbb + jets,
Ø tt → llbb,
Ø final states with many jets p<sub>T</sub><sup>min</sup> ~ 20 – 30 GeV.
```


QCD and EW physics at LHC

4-jet production: $2 \rightarrow 4 \ v \ (2 \rightarrow 2)^2$ |y| < 310 $2 \rightarrow 4$ 1 $(2 \rightarrow 2)^2$ σ (mb) 0.1 0.01 0.001 0.0001 10-5 10 20 ۵ 30 40 p_t^{min} (GeV)

Minimum-bias and the underlying event

Minimum bias events

Experimental definition: depends on the experiment trigger! "Minimum bias" is usually associated to non-single diffractive events (NSD), e.g. ISR, UA5, E735, CDF.

Underlying event in charged jet evolution (CDF analysis)

It is not only minimum bias event!

Charged Jet #1

Conclusions: QCD physics

- n LHC will probe QCD to unexplored kinematic limits;
- n Jet studies (test of pQCD, constrain p.d.f.'s, physics studies);
- Luminosity uncertainties can be reduced by measurements of relative luminosities: high-Q² and wide x-range;
- Prompt-photon production will lead to improved knowledge of background levels (H→ $\gamma\gamma$), f_a(x) and parton dynamics;
- $n = \alpha_s$ at high-energy scales (test of the running of α_s);
- Multiple parton scattering: source of background and/or new physics channels;
- Minimum-bias and the underlying event: improved understanding of events dominated by soft processes.

EW Physics at the LHC

- ⁿ W mass measurement
- Improvements in the measurements of the mass of the top quark (m_t).
- ⁿ A_{FB} asymmetry in dilepton production: $sin^2\theta_{eff}^{lept}(M_z^2)$.
- ⁿ EW single top quark production: direct measurement of V_{tb} .
- ⁿ Triple gauge boson couplings (TGC).
- ⁿ EW physics conclusions.

W mass measurement

• W mass is one of the fundamental parameters of the SM (α_{QED} , G_F, sin θ_{W})

M_w = 80.446 ± 0.040 GeV (LEP2 – PDG)

$$M_{W} = \sqrt{\frac{\pi\alpha}{G_{F}\sqrt{2}}} \frac{1}{\sin\theta_{W}(1-\Delta R)}$$

- Precise measurements will constrain the mass of the SM Higgs or the h boson of the MSSM;
- At the time of the LHC start-up the W mass will be known with a precision of about **30 MeV** (LEP2 + Tevatron)

$$\Delta M_W \approx 0.7 \times 10^{-2} \Delta m_t$$

At the LHC $\Delta m_t \sim 2 \text{ GeV}$

 M_W should be known with a precision of about 15 MeV (combining e/ μ and CMS data).

(achievable during the low-luminosity phase at ATLAS)

 \bullet constrains $M_{\rm H}$ to ~25% .

Sheffield, 2nd April 2003

W mass measurement

Sources of uncertainty:

• Statistical uncertainty: < 2 MeV for $\mathcal{L} \approx 10 \text{ fb}^{-1}$

 $pp \to W + X$ $W \to l V_l$ $\sigma = 3$ $3x10^8 \text{ even}$

 Systematic error will arise mainly from the MC reliability in reproducing the data

 a) physics: W p_t spectrum, structure functions, W width, radiative decays and background.
 b) detector performance: lepton scale, energy/ momentum resolution and response to recoil.

- Lepton energy and momentum scale:
- ~0.1% at Tevatron
- ~0.02% at LHC ATLAS (tuned to $Z \rightarrow l^+ l^-$, *l*=e, µ)

Ø Detector resolution + pile-up will smear significantly the transverse mass distribution. (method limited to the low-luminosity phase!)

Top mass

• Together with M_W , m_t helps to constrain the SM Higgs mass.

 $m_t = 175.3 \pm 4.4 \text{ GeV}$ (global fit – PDG)

• tt production is expected to be the main background to new physics processes: production and decay of **Higgs bosons** and **SUSY particles**.

• Precision measurements in the top sector are important to get more clues on the origin of the fermion mass hierarchy.

• Top events will be used to calibrate the calorimeter jet scale $(W \rightarrow jj \text{ from } t \rightarrow bW)$.

 $\sigma_{NLO}\left(pp \rightarrow t\bar{t}\right) = 833 \text{ pb at LHC} > 8x10^6 \text{ events at } (\angle \approx 10 \text{ fb}^{-1})$ $gg \rightarrow t\bar{t} (\sim 90\%) \qquad (\sim 7 \text{ pb at Tevatron})$ $q\bar{q} \rightarrow t\bar{t} (\sim 10\%)$

SM dominant decaytt leptonic decays
$$(t \rightarrow bW)$$
single lepton:29.6% $W \rightarrow lv, W \rightarrow jj$ (2.5 x 10⁶ events)di-lepton:4.9% $W \rightarrow lv, W \rightarrow lv$ (400,000 events)

QCD and EW physics at LHC

Determination of $\sin^2\theta_{eff}^{lept}(M_7^2)$

- $sin^2 \theta_{eff}^{lept}$ is one of the fundamental parameters of the SM!
- precise determination will constrain the Higgs mass and check consistency of the SM.

• $sin^2 \theta_{eff}^{lept}$ will be determined at the LHC by measuring **A_{FB} in dilepton production** near the Z pole.

 $A_{FB} = b \{ a - \sin^2 \theta_{eff}^{lept} (M_z^2) \}$

a and b calculated to NLO in QED and QCD.

 σ (Z $\rightarrow l^+l^-$) ~ 1.5 nb (for e or μ)

/ cuts – e⁺e⁻ y(Z) > 1)	$\Delta \mathbf{A}_{FB}$ (statistical)	$\Delta { m sin}^2 oldsymbol{ heta}_{ m eff}^{ m \ lept}$ (statistical)		p.d.f.'s , lepton acceptance correction calculations.	(~0.1%), radiative
$y(l_{1,2}) < 2.5$	3.03 x 10 ⁻⁴	4.0 x 10 ⁻⁴		$\sin^2 \Theta_{off}^{lept}$ (M ₇ ²) = 0.23126 ±	1.7 x 10 ⁻⁴ (global fit PDG)
y(l ₁) < 2.5; y(l ₂) < 4.9	2.29 x 10 ⁻⁴	1.41 x 10 ⁻⁴			
		L = 100 fb ⁻¹		can be further improved: combine channels/experime	nts.
A. M. Morae	es	Q	CD and EW	physics at LHC	Sheffield, 2 nd April 2003

 Main systematic effect: uncertainty on the radiative

EW single top quark production (not yet observed!)

- Probe the t-W-b vertex
- **Directly measurement** (only) of the CKM matrix element V_{tb} at ATLAS (assumes **CKM unitarity**)
- New physics: heavy vector boson W'
- Source of high polarized tops!
- Background: tt, Wbb, Wjj

Process	S/B	S∕√B	$\Delta V_{tb}^{}/V_{tb}^{}$ – statistical	∆V _{tb} / V _{tb} - theory
W-gluon	4.9	239	0.51%	7.5%
Wt	0.24	25	2.2%	9.5%
W *	0.55	22	2.8%	3.8%

Systematic errors: b-jet tagging, luminosity $(\Delta \mathcal{L} \sim 5 - 10\%)$, theoretical (dominate V_{tb} measurements!).

QCD and EW physics at LHC

 $L = 30 \, \text{fb}^{-1}$

Triple gauge boson couplings

• TGC of the type $WW\gamma$ or WWZ provides a direct test of the non-Abelian structure of the SM (EW symmetry breaking).

• It may also indicate hints of **new physics**: new processes are expected to give anomalous contributions to the TGC.

• New physics could show up as deviations of these parameters from their SM values.

• This sector of the SM is often described by 5 parameters: \mathbf{g}_1^{Z} , $\mathbf{\kappa}_{\gamma}$, $\mathbf{\kappa}_{Z}$, λ_{γ} and λ_{γ} , (SM values are equal to $\mathbf{g}_1^{Z} = \mathbf{\kappa}_{\gamma} = \mathbf{\kappa}_{Z} = 1$ and $\lambda_{\gamma} = \lambda_{\gamma} = 0$, at the tree level). Gauge, C and P invariance

• Anomalous contribution to TGC is enhanced at high

 \sqrt{s} (increase of production cross-section).

• Variables: $W_{\gamma}: (m_{W_{\gamma}}, |\eta_{\gamma}^{*}|) \text{ and } (p_{T}^{\gamma}, \theta^{*})$ $WZ: (m_{WZ}, |\eta_{Z}^{*}|) \text{ and } (p_{T}^{Z}, \theta^{*})$ sensitive to angular information: $|\eta_{V}^{*}|, \theta^{*}$

• SM: vanishing helicity at low $|\eta|$ Non-standard TGC: partially eliminates `zero radiation'

Systematic uncertainties:

- At the LHC, sensitivity to TGC is a combination of the very high energy and high luminosity.
- Uncertainties arising from low p_T background will be quite small: anomalous TGC signature will be found at high p_T .
- Theoretical uncertainties: p.d.f.'s & higher order corrections

Statistical sensitivity at 95% C.L.		
Δg_1^z	±0.0078	
$\Delta \mathbf{\kappa}_{Z}$	±0.069	
λ _z	±0.0058	
Δκ _γ	±0.035	
λγ	±0.0025	
	$\mathcal{L} = 30 \text{ fb}^{-1}$	

Using max-Likelihood fit to	
m _{wv} ⊗ η _v *	

Conclusions: EW sector

- LHC will allow precision measurements: unexplored kinematic regions, high-statistics (W, Z, b, t factory);
- n ATLAS: valuable precision measurements of SM parameters;
- $^{\rm n}$ W mass can be measured with a precision of 15 MeV (combinig e/ μ and ATLAS + CMS);
- ⁿ Top mass: ~ 2 GeV (combined with Δm_W ~15 MeV, constrains M_H to ~ 25%);
- $\sin^2 \theta_{eff}^{lept}$ (M_Z²) can be determined with statistical precision of 1.4x10⁻⁴ (competitive to lepton collider measurements!)
- EW single top production: direct measurement of V_{tb}; measurement of top polarization (Wg with statistical precision of ~ 1.6%);
- ⁿ Sensitivity to anomalous TGC's: indicative of new physics!

