# **RAL MICE Hall Project**



Validation and Improvement Suggestions for MICE Experimental Hall Modelling

Prepared by Chris Riley and Klaus Höffer

# Introduction

The purpose of this report is to investigate the RAL/University of Sheffield models for the MICE Experimental Hall. The work is divided into 5 sections:

- 1. Comparison of results from a free space finite element model with fields computed using Biot-Savart expressions
- 2. Investigation of the influence of ferromagnetic components in the model on the results
- 3. Investigation of the sensitivity to material properties in the ferromagnetic components
- 4. Accuracy of the model and the effect of element order
- 5. Extraction of fields from the main model to investigate detailed substructure models.

A second report on substructuring, "A further investigation of substructure and simplification modelling for the RAL MICE Hall" has also been prepared to investigate more generic advice on substructure models.

# Item 1 - Comparison of fields in free space

Before determining the validity of the MICE Hall model and suggesting any improvements, the effect of using the finite element method is investigated. The field from the solenoids used in MICE can be evaluated to an accuracy of about 1 part in 100 million using the Biot-Savart expressions implemented on a digital computer. However, the finite element mesh used for the MICE Hall will not allow this accuracy because of

- Numerical issues associated using low order polynomial representation of the fields in the elements
- Numerical issues associated with solution of the equations
- Truncation of infinite space by a finite meshed area

The aim of this section of the report is to obtain some idea about how using finite elements has affected accuracy from a comparison of fields in a free space finite element model (where all components have the material properties of air) with Biot-Savart calculations.

The investigation has been done with Model 91 which has 15.6 Million active elements; all elements are quadratic. The results presented are the field along the solenoid axis, the field along a line 2000 mm from the solenoid axis in the same horizontal plane and the field on a Cartesian patch orthogonal to the axis where there will be significant return flux. Although graphical results for these are presented (figures 1 through 3), it is actually more instructive to compare integral values, as shown in Table 1.

The accuracy of the field on axis computed by the finite element mesh is extremely high. This is to be expected as these fields are being recovered in reduced magnetic potential regions where the finite elements are only representing the magnetization field. The magnetization field should be identically zero since all magnetic components have been set to air properties. The very small error results from the numerical issues outlined above.

However, in other areas of the model, the accuracy is in the order of about 0.2%. These fields are recovered in total potential regions where the finite elements are representing the total field. The inaccuracy is primarily due to the truncation of infinite space by the boundary of the mesh which implies images of the model space.

It would be expected that the difference between the finite element simulation and the Biot-Savart results would increase further closer to the model boundary.

|                   |       | x=0<br>y=0       | x = 2000      | Flux through a patch in                     |
|-------------------|-------|------------------|---------------|---------------------------------------------|
|                   |       | z = +1500        | z = +1500     | XY-plane @ Z=-3000,                         |
|                   |       | Bzdz             | Bzdz          | X: -4800 to -2000,                          |
|                   |       | J<br>x=0         | x = 2000      | Y: -1000 to +1000                           |
|                   |       | y=0              | y=0           | $\int \mathbf{p} = d\mathbf{r} d\mathbf{r}$ |
|                   |       | 27500            | 27500         | J BZ axay                                   |
| Biot-Savart       | coils | 24173.37011 T.mm | -51.6616 T·mm | -23083.5364 T·mm <sup>2</sup>               |
| (integral fields) |       |                  |               |                                             |
| Finite Element    | mesh  | 24173.11681 T.mm | -51.7435 T.mm | -23133.1985 T·mm <sup>2</sup>               |
| (nodal fields)    |       |                  |               |                                             |
| Percent error     |       | 0.001 %          | 0.16 %        | 0.21 %                                      |

#### Table 1: Comparison of nodal and integral fields



Figure 1: Z-directed lines at X = 0, Y = 0

Order: 4070059400

# 16/07/2013







Figure 3: Position of patch 1 (XY) in the model space

# Item 2 - Adding ferromagnetic components to the model

The next investigation is to determine the significance of the ferromagnetic components included in the model in determining the overall accuracy of the simulation. There are 48 individual material names used in Model 91 (although some of these are assigned permeability = 1 and are only included for visualization purposes). However, there are still 31 separate ferromagnetic components. Adding each one individually would be very time consuming (and probably not all that instructive!). Consequently, components have been added in groups that have similar locations in the model.

Starting from the model where all components have material properties of air, ferromagnetic components were added in the following order.

| Case name |                                                            |
|-----------|------------------------------------------------------------|
| MAT_0     | allair                                                     |
| MAT_1     | 4 "lenses" added (EMR, uTOFc, VP)                          |
| MAT_2     | as MAT_1, added side walls + floorweb (NSW, SSW, Floorweb) |
| MAT_3     | as MAT_2, added cellar steel (Cellar)                      |
| MAT_4     | as MAT_3, added beam dump (Beam_Dump)                      |
| MAT_5     | as MAT_4, added the shield around Q4 – Q6 (DSA_RS)         |
| MAT_6     | as MAT_5, added quadrupoles Q7 – Q9 (Q7, Q8, Q9)           |
| MAT_all   | includes all ferromagnetic parts in model 91               |

### Table 2: Overview of cases

Figures 4 through 11 show these different models







Figure 5: Ferromagnetic parts in MAT\_2, side walls + floorweb added











Figure 8: Ferromagnetic parts in MAT\_5, shield around quadrupoles added



Figure 9: Ferromagnetic parts in MAT\_6, quadrupoles Q7 – Q9 added

16/07/2013



Figure 10: All ferromagnetic parts in model 91 (MAT\_all)



Figure 11: All ferromagnetic parts in model 91 (MAT\_all), different view

Most of these cases we run as restarts from a fully converged nonlinear solution with all materials in place. The 3d Pre-Processor was used to set up these restarts; a typical structure of a script is shown below. As stated above, Model 91 features a total of 48 material names; in the example most of them have been omitted to improve readability.

```
/ Opera-3d Pre-Processor
/ Opera 16 [Build 29934] (x64)
/ Started: 17/Jun/2013 11:06:09
/ Node: PREC01. Processor: Intel64/x64. System: Windows 7 (Service Pack 1)
```

16/07/2013

```
SOLV OPTI=DEFA
$STRI ANLT TOSCA|SOLV PROG=TOSCA, TYPE=MAGN, DRSCALE=YES,
SOLV FILE='KJH_model91_allMat_mu_original__MAT1.op3' OPTI=RESTART CASE=1
RESTART in PRE
MATE NAME=BEAM DUMP CONCRETE TYPE=LINE ANIS=ISOT
MATE MUX=1 HCZ=0
MATE NAME=BEAM DUMP STEEL TYPE=LINE ANIS=ISOT
MATE MUX=1 HCZ=0
...
MATE NAME=EAST WALL CONCRETE TYPE=LINE ANIS=ISOT
MATE MUX=1 HCZ=0
MATE NAME=EMR Steel TYPE=NONL ANIS=ISOT
MATE BHX='RAL_MildSteel.bh'
MATE NAME=FLOORWEB STEEL TYPE=LINE ANIS=ISOT
MATE MUX=1 HCZ=0
MATE NAME=FLOOR CONCRETE LOWER TYPE=LINE ANIS=ISOT
MATE MUX=1 HCZ=0
...
...
MATE NAME=SWDB STEEL TYPE=LINE ANIS=ISOT
MATE MUX=1 HCZ=0
MATE NAME=TRFP FLOORPLATE STEEL TYPE=LINE ANIS=ISOT
MATE MUX=1 HCZ=0
MATE NAME=uTOFc_Steel TYPE=NONL ANIS=ISOT
MATE BHX='RAL TenTen.bh'
MATE NAME=VP Steel TYPE=NONL ANIS=ISOT
MATE BHX='RAL TenTen.bh'
MATE NAME=WEST WALL CONCRETE TYPE=LINE ANIS=ISOT
MATE MUX=1 HCZ=0
SETT RHS=ADAP
QUIT
```

To characterise the implications of adding ferromagnetic materials, the magnetic flux density has been calculated on 3 patches. The first patch is the same as in Item 1 (XY plane at Z=-3000), the second is behind the NSW wall (YZ plane at X=-5300) as shown in figure 12, and the third is behind the SSW wall (YZ plane at X=+3920) as shown in figure 13.

Order: 4070059400

# 16/07/2013



Figure 12: Position of patch 2 behind NSW



#### Figure 13: Position of patch 3 behind SSW

Patch 1 intersects the return path of the flux, where the field is directed in negative Z. Therefore it was sufficient to integrate –Bz to obtain a representative number. On patches 2 and 3 only little flux is intersecting; the direction of the field is nearly parallel to the patch. Therefore the absolute value of the flux density normal to the patch was integrated:

### MAP FILE=TEMP COMPONENT=ABS (BX\*NX+BY\*NY+BZ\*NZ)

In addition, the values for  $B_{min}$  and  $B_{max}$  were recorded for each of the three patches. These results are shown in tables 3 and 4.

| Integrals on patches               | Patch 1 (XY) | Patch 2 (YZ) | Patch 3 (YZ) |
|------------------------------------|--------------|--------------|--------------|
| model91_allMat_mu_1.op3            | 23133.2      | 4543.564     | 8117.124     |
| model91_allMat_mu_originalMAT1.op3 | 22879.38     | 4534.942     | 7977.290     |
| model91_allMat_mu_originalMAT2.op3 | 14022.02     | 1120.718     | 189.2561     |
| model91_allMat_mu_originalMAT3.op3 | 14021.47     | 1115.108     | 183.6692     |

| Table 3: | Integrals | on | patches | in | [T · | $\cdot \text{ mm}^2$ ] |
|----------|-----------|----|---------|----|------|------------------------|
|----------|-----------|----|---------|----|------|------------------------|

| model91_allMat_mu_originalMAT4.op3 | 14020.24 | 1111.936 | 182.2095 |
|------------------------------------|----------|----------|----------|
| model91_allMat_mu_originalMAT5.op3 | 13997.83 | 1149.024 | 238.8757 |
| model91_allMat_mu_originalMAT6.op3 | 13368.59 | 1408.696 | 526.1588 |
| model91_allMat_mu_original.op3     | 11779.61 | 2588.172 | 670.6671 |

Table 4: Minimum and maximum values of B on patches in [Gauss]

|                     | Patch1  | Patch1  | Patch2  | Patch2  | Patch3  | Patch3  |
|---------------------|---------|---------|---------|---------|---------|---------|
|                     | BZmin   | BZmax   | Bmin    | Bmax    | Bmin    | Bmax    |
| mu_1.op3            | 23.5206 | 60.5199 | 19.6284 | 21.6762 | 32.6233 | 39.7642 |
| mu_originalMAT1.op3 | 23.6061 | 58.6778 | 19.738  | 21.8434 | 32.5756 | 39.8338 |
| mu_originalMAT2.op3 | 2.5714  | 44.7291 | 1.4174  | 4.2217  | 2.2119  | 2.5599  |
| mu_originalMAT3.op3 | 2.5708  | 44.7263 | 1.4143  | 4.2129  | 2.2148  | 2.5605  |
| mu_originalMAT4.op3 | 2.5700  | 44.7248 | 1.4123  | 4.2071  | 2.2113  | 2.5559  |
| mu_originalMAT5.op3 | 2.5589  | 44.6635 | 1.4224  | 4.2470  | 2.1953  | 2.5643  |
| mu_originalMAT6.op3 | 2.4808  | 42.3483 | 1.5129  | 4.6617  | 2.2742  | 2.8127  |
| mu_original.op3     | 2.6013  | 39.6062 | 3.0449  | 4.3986  | 2.2586  | 2.8156  |

The results show that the lenses added in MAT 1 are not very significant - only reducing the return flux in free space (patch 1) by about 1% and having an even smaller effect on the flux at the patches behind the shielding walls. These lenses could probably be omitted from any future model as the differences are in the same order as the error associated with using a finite element representation.

Adding the side walls and floor web has a much more significant effect (MAT\_2). These provide a preferential path for the return flux, thereby reducing the flux on patch 1 by about 40% - although the reduction of the maximum flux density (closest to the solenoids) is only about 25%. This is to be expected as the flux returning through the walls still has to cross a significant air space and a path close to the solenoids will have a similar reluctance.

On patches 2 and 3, the flux and flux density values are much more drastically reduced, as would be expected from the shielding action of the walls. The flux in patch 2 is reduced by more than 75% and the maximum value by more than 80%. On patch 3, the reductions are even greater (about 98% and 97% respectively). This suggests that the NSW wall is less saturated than the SSW wall - which is also to be expected as the SSW wall is closer to the solenoids.

The additions made in MAT\_3 (cellar steel) and MAT\_4 (beam dump) have little effect on the results and the changes observed are below the errors associated with the finite element representation. The MAT\_5 addition (quadrupole shield) has a small effect - further reducing the return flux at patch 1 by about 5%, but actually increasing the flux density behind the side walls (patches 2 and 3). The quadrupole shield will not be saturated and will be a preferential path for the return flux, allowing more Ampere-turns to be available for other parts of the return circuit. Consequently, the side walls will become slightly more saturated making them less effective as shields.

This same effect can be seen more readily with the addition of the Q7 – Q9 quadrupoles (MAT 6). The flux through patch 2 increases by about 30%, while in patch 3 it more than doubles. However, the increases in the maximum flux density are less extreme (about 10% in both cases).

The final model with all ferromagnetic components shows further significant changes to the results. Return flux through patch 1 is reduced by another 13% but flux through patch 2 increases by nearly 80% and through patch 3 by 20%. The maximum values of flux density are largely unaffected with patch 2 actually reducing by 5%. The most likely component for this increase is the FWN\_floorplate\_steel which again is providing an effective return path. The dipole and quadrupoles Q4 - Q6 are behind the shielding wall and will not be very significant.

This investigation shows that the most significant components are those which substantially affect the return path of the flux. While the results presented have been necessarily reduced, they are representative of important areas in the model where sensitive equipment is potentially to be mounted. The models produced for these studies can be used for field recovery in any other area of the meshed space.

It is probable that the MICE Hall model already contains enough of the significant components for the fields in free space to be accurate within 1 or 2% - remembering of course that all fields may be at least 0.2% of the "all free space" value in error anyway. From Cobham's knowledge of the MICE Experimental Hall, there do not appear to be any major components that have been omitted that will further significantly affect results, although the complete layout drawings have not been available.

# Item 3 – Investigation of material property variations

An investigation has been made into how sensitive the results for the MICE Hall Model 91 are to material In the model, steel components have been either assigned Cobham's 1010 steel magnetic properties. characteristic from the library or the mild steel characteristic from the library. The LINAC wall is made from reinforced concrete and an equivalent curve based on volume fraction has been derived from the mild steel curve. However, it is not known how accurately these curves really represent the actual materials in the MICE Hall.

Consequently, all the models that were presented and discussed under Item 2 were run with modified material properties; the magnetization values of the 3 BH curves were "diluted" by a factor of 90%. The following method was used:

 $B_{new} := dilution \ factor \ \cdot \ old \ Magnetisation, M \ (in \ Tesla) + \mu_0 \ \cdot \ H_{old}$ 

and the following COMI shows how this was achieved. Materials that are highly saturated will behave significantly differently with a 10% reduction in material properties - so these experiments will give an indication how sensitive the MICE Hall model is to material property uncertainties.

```
/ Modeller dilute RAL.comi
/
$constant #packingf 0.9
/
/ Open input file for reading
$ open 1 RAL MildSteel.bh read
/ Read the first line into user variable #np
$ read 1 #np #info1 #info2
/ Open output file for writing
$ open 2 RAL MildSteel diluted09.bh write
/ Define a string format to space the output
$ format 1 string string=' '
/ Define a floating point format
$ format 2 expo 0
/ Assign format numbers for the output
$ assign 2 1 2 1 2
$ write 2 #np #info1 #info2
/ first point 0; 0
$ read 1 #b #h
$ write 2 #b #h
/ Start a loop from 1 to #np-1
$ do #i 1 #np-1
/ Read #b and #h from input file
$ read 1 #b #h
/
/ Evaluate #b
$if (#info1&&#info2) eq 1 |/SI units
$constant #b (#b-mu0*#h)*#packingf+(mu0*#h)
$else |/CGS
$constant #b (#b-#h) * #packingf+#h
$end if
/ Write to output file
$ write 2 #b #h
/ End of loop
$ end do
/ Close files
```

\$ close 1 \$ close 2 / end of comi-script

The magnetic field was evaluated with the same method as discussed in the previous item: field integrals, minimum and maximum on 3 patches and the results are presented in tables 5 and 6.

| Integrals on patches | Patch 1 (XY) | Patch 2 (YZ) | Patch 3 (YZ) |
|----------------------|--------------|--------------|--------------|
| /                    |              |              |              |
| MAT1_diluted.op3     | 22880.18     | 4534.967     | 7977.702     |
| MAT2_diluted.op3     | 14113.96     | 1077.715     | 187.4631     |
| MAT3_diluted.op3     | 14112.62     | 1071.998     | 183.9351     |
| MAT4_diluted.op3     | 14112.09     | 1069.289     | 182.5235     |
| MAT5_diluted.op3     | 14088.82     | 1106.929     | 219.0933     |
| MAT6_diluted.op3     | 13459.44     | 1368.78      | 493.7205     |
| allMat_diluted.op3   | 11939.97     | 2676.976     | 630.8459     |

| Table 5: | Integrals | on j | patches i | in [T | $\cdot$ mm <sup>2</sup> ] | , diluted | materials |
|----------|-----------|------|-----------|-------|---------------------------|-----------|-----------|
|----------|-----------|------|-----------|-------|---------------------------|-----------|-----------|

| Table 6: Minimum and maximum | values of B on patches in | [Gauss], diluted materials |
|------------------------------|---------------------------|----------------------------|
|------------------------------|---------------------------|----------------------------|

|                    | Patch1  | Patch1  | Patch2  | Patch2  | Patch3  | Patch3  |
|--------------------|---------|---------|---------|---------|---------|---------|
|                    | BZmin   | BZmax   | Bmin    | Bmax    | Bmin    | Bmax    |
| /                  |         |         |         |         |         |         |
| MAT1_diluted.op3   | 23.6059 | 58.6832 | 19.7377 | 21.8428 | 32.5757 | 39.8335 |
| MAT2_diluted.op3   | 2.7300  | 44.9472 | 1.5337  | 4.1129  | 2.5141  | 2.8961  |
| MAT3_diluted.op3   | 2.7292  | 44.9438 | 1.5304  | 4.1036  | 2.5141  | 2.8937  |
| MAT4_diluted.op3   | 2.7287  | 44.9426 | 1.5287  | 4.0990  | 2.5146  | 2.8931  |
| MAT5_diluted.op3   | 2.7166  | 44.8791 | 1.5378  | 4.1388  | 2.4866  | 2.8829  |
| MAT6_diluted.op3   | 2.6352  | 42.5670 | 1.6233  | 4.5525  | 2.5182  | 2.9947  |
| allMat_diluted.op3 | 2.7496  | 39.9499 | 3.0742  | 4.6470  | 2.4649  | 2.9494  |

By comparisons with tables 3 and 4 respectively, it can be readily seen that the results do not have a great sensitivity to the material characteristics. Changes are below 5% in all cases and in many cases much lower. The reduced ability of the side walls to offer a preferential return path can be seen, although they actually now also have less flux to shield so the densities on patches 2 and 3 are actually slightly lower. However, as the side walls are poorer return paths, the flux density values on patch 1 are slightly higher.

Consequently, it is expected that the uncertainty about material properties in surrounding structures should only be of minor concern for the MICE experiment.

# Item 4 – Investigation of mesh quality

In items 1 through 3 and in item 5, all versions of Model 91 were run with the setting that all elements were set to "quadratic", as had been set by the originators of the models. While this is undoubtedly most accurate, the cost of doing this is to make very large models. In this item, the aim is to find out whether this is really necessary, or whether solution times can be reduced by using linear elements.

Two further models were created. The first of these uses a combination of linear and quadratic elements: all air and all materials with properties of air are set to linear, and all magnetisable materials are set to quadratic. The second model uses linear elements throughout. Table 7 presents important statistics for the simulations. The results presented are the same as those in Items 2 and 3, as shown in tables 8 and 9

|                     | Linear Elements | Mixed Elements | Quadratic Elements |
|---------------------|-----------------|----------------|--------------------|
| Number of Elements  | 15.6 Million    | 15.6 Million   | 15.6 Million       |
| Number of Equations | 2.64 Million    | 4.25 Million   | 21 Million         |
| Nonlinear tolerance | 1.0 E-03        | 1.0 E-03       | 1.0 E-03           |
| Nonlineariterations | 9               | 11             | 10                 |
| Used hardware       | resource2       | prec01         | resource2          |
| Solution time       | 2:45 hours      | 9:40 hours     | 58:39 hours        |

#### Table 7: Comparison of equation numbers and solution times

#### Table 8: Integrals on patches in $[T \cdot mm^2]$

| Integrals on patches           | Patch 1 (XY) | Patch 2 (YZ) | Patch 3 (YZ) |
|--------------------------------|--------------|--------------|--------------|
| mu_original_linearElements.op3 | 11703.4447   | 2534.4562    | 673.8262     |
| mu_original_mixed_Elements.op3 | 11710.1525   | 2541.1677    | 670.2382     |
| mu_original.op3                | 11779.6056   | 2588.1721    | 670.6671     |

#### Table 9: Minimum and maximum values of B on patches in [Gauss]

|                                    | Patch1 | Patch1  | Patch2 | Patch2 | Patch3 | Patch3 |
|------------------------------------|--------|---------|--------|--------|--------|--------|
|                                    | BZmin  | BZmax   | Bmin   | Bmax   | Bmin   | Bmax   |
| mu_original_linear_Elements.op3    | 2.5996 | 39.3038 | 2.9885 | 4.3720 | 2.2798 | 2.8025 |
| mu_original_mixed_Elements.op3     | 2.5999 | 39.3316 | 2.9986 | 4.3789 | 2.2761 | 2.7996 |
| mu_original_quadratic_Elements.op3 | 2.6013 | 39.6062 | 3.0449 | 4.3986 | 2.2586 | 2.8156 |

These results show that, on the patches examined, the benefit of using quadratic elements at all is marginal. Changes in results are largely below 1%, while the benefit of the all linear element solution in terms of problem size and corresponding solution time, as shown in table 7, is considerable.

Unfortunately, not all of the models were run on the same hardware due to time constraints, with the prec01 computer used for the mixed element simulation being a little faster than resource2 used for the other 2 Nevertheless, as expected, solution times increase more than linearly with equation numbers studies. because:

- iterative sparse matrix solution schemes are approximately dependent to the power of 1.5 with number of equations (assuming same order elements in all cases)
- quadratic element equations contain more terms than linear elements, making a less sparse matrix

# Item 5 - Substructure Modelling in Model 91

The final investigation is of the possibility of using field values from the overall model of MICE Hall as a source field for a detailed substructure model. Model 91 does not include any substructures like cabinets or racks. For a preliminary study to investigate the effects of substructures, the following steps were performed:

- 1. Solving Model 91 as provided, i.e. with all ferromagnetic materials in place, and no cabinet. (corrected "reducedMildsteel" for Linac Wall, mixed linear/guadratic elements)
- 2. Retrieved a simplified representative substructure from an old model that had been supplied by RAL in November 2012 (CompStack2\_S4\_1mumetal\_3steel.opc): rack1.opc.
- 3. Inserted rack 1. opc into Model 91, and performed a Boolean Cutaway operation to trim the "SouthShield" in the model. (do not forget to define #Layer th=5)
- 4. Solving Model 91 with the rack. (corrected "reducedMildsteel" for Linac Wall, mixed linear/quadratic elements)
- 5. Post-processing the model with the rack (patch in the ZX-plane through the middle of the rack @ Y=-680).

These steps are illustrated in figure 14.



Figure 14: The rack that was extracted from an old model; the rack inserted into model 91; flux lines on a patch through the rack from a model 91 that includes the rack

Also the rack 1.opc was solved separately as a submodel, driven by a magnetic field that is extracted from Model 91 – see step 1) above. The driving field is shown in figure 15.

# 16/07/2013



Figure 15: Undisturbed flux lines in model 91 without the rack

The following steps were performed:

- 1. *Rack1.opc* needs to be surrounded with some elements of air. An air volume was created such that it is as far away as possible from the rack, but does not touch the SSW\_Steel wall. Important is to set the potential type of this air volume to total potential.
- 2. Select all outer faces of the air volume and specify a boundary condition label. Assign a functional magnetic scalar potential with the name "RED" as shown in the following screenshot:

| Set Magnetostatic Bo              | undary Condition Data                                                                                                                                                                     |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Far_field (Unused)<br>Rack1_outer | Electromagnetic boundaries Electromagnetic boundary condition type None None Normal magnetic Normal magnetic + potential Normal derivative of potential Symmetry Functional potential RED |
|                                   | Drive label                                                                                                                                                                               |
| Apply                             | OK Cancel Clear Delete                                                                                                                                                                    |

- 3. Create a database with the name Rack 1\_with\_Air.OP3, but do not solve it.
- 4. Load this unsolved model into the Post-Processor and export a table of node coordinates X,Y,Z (nothing needs to be selected for this operation).

### Tables-> Create Table File-> All Node Coordinates

and chose a filename, for example *Nodes\_Rack1\_with\_Air.table* 

5. Load Model 91 (without the rack) into the Post-Processor, process the table of node coordinates and output a new table with columns X, Y, Z and RED as shown below.

Tables-> Process Table File-> Calculate Fields and save in another Table file

| Process Table File                                                                                       |                                                  |            |            |  |  |  |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------|------------|--|--|--|
| nput file name D:\ud\kjh\330442_RAL_Consultancy\Model_91\Model_91_sub\Wodes_Rack1_with_Air.table         |                                                  |            |            |  |  |  |
| Output file name         Nodes_RPOT_Rack           Field components         1-6         Field components | utput file name pWodes_RPOT_Rack1_with_Air.table |            |            |  |  |  |
| Field components 1-6                                                                                     | Field components 1-6                             |            |            |  |  |  |
|                                                                                                          |                                                  |            | • •        |  |  |  |
| 2 Y                                                                                                      | ▼                                                | ▼ LENGU    | <b>→ →</b> |  |  |  |
| 3 Z                                                                                                      | ▼                                                | ▼ LENGU    | • •        |  |  |  |
| 4 RPOT                                                                                                   | ▼ RED                                            | ▼ SCALU    |            |  |  |  |
| 6                                                                                                        | •                                                | • 1<br>• 1 |            |  |  |  |
|                                                                                                          |                                                  |            |            |  |  |  |
| OK                                                                                                       |                                                  |            |            |  |  |  |
|                                                                                                          |                                                  |            |            |  |  |  |

 Load the model Rack 1\_with\_Air.OP3 again, and process the new table (Nodes\_RPOT\_Rack 1\_with\_Air.table) with output to database. This stores the nodal variable RED in the small model.

### Tables-> Process Table File-> Import Fields at all Nodes or Elements

- 7. Close the Post-Processor before running TOSCA.
- 8. Solve the model Rack1\_with\_Air.OP3 with TOSCA.

### Post-processing and discussion

Inside the rack that is shown in figure 14 there is a green cube. This cube is a bulk material with the name "CompStack2". Figure 16 shows a patch at Y=-680 in the middle of the cube. At this position the direction of the flux is vertical (+By).

For the submodel and for the large model that includes the rack, the integral values of BMOD on the patch were compared.



Figure 16: Patch in air that is enclosed in the shielded walls "CompStack2"

Then the integral values of BMOD were compared.

### Table 10: Minimum and maximum values of B on patches in [Gauss]

|                                    | Integral of B on patch   | B min     | B max      |
|------------------------------------|--------------------------|-----------|------------|
| Large model that includes the rack | 69.76 T·mm <sup>2</sup>  | 4.5 Gauss | 10.7 Gauss |
| Submodel with rack only            | 118.52 T·mm <sup>2</sup> | 7.5 Gauss | 15.5 Gauss |

 $\frac{118.52 - 69.76}{69.76} = \frac{48.77}{69.76} = 69.9\%$ Percent error:

The conclusion is that we get quite a different field distribution in a model with or without a rack. Therefore the field from an overall model not containing that substructure should not be used as a driving field for a detailed sub-model of the substructure.

The other report referred to in the Introduction, "A further investigation of substructure and simplification modelling for the RAL MICE Hall", shows that substructuring can be more effectively carried out if a simplified model of the substructure is included in the overall model.