DRIFT - Dark Matter Directional Detection

Neil Spooner (University of Sheffield) on behalf of the DRIFT collaboration

DRIFT (Edinburgh, Sheffield, Occidental LA, New Mexico)

Burgos et al, arXiv:0707.1488 (sub Astrop.Phys, 2007) - first DII data Burgos et al, arXiv:0707.1758 (sub Astrop.Phys, 2007) - DII alpha results Spooner, Majewski et al, arXiv:1107..- head-tail simulations DARK2007 Lightfoot et al., Astrop Phys, 27 (2007) 490 Tziaferi et al., Astroparticle Physics 27 (2007) 326 Spooner. J, Phys. Soc. Japan <u>http://arxiv.org/abs/0705.3345</u> Alner et al., Nucl. Instrum. and Meth. in Phys. Res. A555 (2005) 173 Alner et al., Nucl. Instrum. and Meth. in Phys. Res. A 535 (2004) 644

D. Snowden-Ifft (Oxy)

A WIMP telescope?

DRIFT IIa,b,c design

- 1 m³ active volume back to back MWPCs
- Gas fill 40 Torr CS₂ => 167 g of target gas
- 2 mm pitch anode wires left and right
- Grid wires read out for Δy measurement
- Veto regions around outside
- Central cathode made from 20 μm diameter wires at 2 mm pitch
- Drift field 624 V/cm
- Modular design for modest scale-up

• 1.5 m³ time projection chambers containing 40 torr of CS_2 with MWPC readout

event by event, maximum information
gamma, electron, recoil tracking in space
gamma, electron, recoil tracking in time
at low threshold >1 keV
multi-target - F, S, C, Xe... (SD and SI)
recoil direction information
including sense direction of recoils

Track reconstruction, R2, R3

Threshold - new analysis

⁵⁵Fe track reconstruction and digital polynomial smoothing - data fit to

exponential decay(noise) plus Gaussians (escape and full absorption peaks).

Energy thresholds -->

Note these are not the trigger thresholds yet

Paper in preparation - D. Muna

Source of Track	Energy (keV)
Electron	1.23
Alpha	1.23
Carbon nuclear recoil	2.15
Sulphur nuclear recoil	3.46

Radon Progeny Recoils (RPRs)

First low background runs of DRIFT-II see a recoillike background ~200-600 / day (50-250 keV).

Increase with time consistent with Rn emanation.

Hypothesis: Recoil of radon progeny on central cathode - with alpha absorbed in wire.

Rn decay chain

 Gaseous element in Uranium decay chain

• Rn222 half life = 3.8 days

 4 alpha decays before reach stable Pb-206

 Radon levels at Boulby are actually very low! (~3 Bq/m³)

Rn Emanation Facility - ²¹⁸Po

Sample	Fill gas	Emanation	Humidity	Raw result	Adjusted result
(Emanating into vacuum)		time (days)	(%)	(Bq/m ³)	(Rn atoms.s ⁻¹)
RG58 coax cables (72m)	Dry N2	12.5	24	9.4 +/- 0.7	0.36 +/- 0.03
Electronics boxes	Dry N2	12	37	1.5 +/- 0.3	0.05 +/- 0.01
Ribbon cables	Dry N2	6.5	23	10.1 +/- 0.7	0.50 +/- 0.03
Grouping Boards	Dry N2	10	37	0.3 +/- 0.2	<0.02 *
Single core & thin coax cables	Dry N2	7	19	1.3 +/- 0.3	0.04 +/- 0.02
Field cage parts	Dry N2	7	33.3	0.6 +/- 0.2	<0.03 *
				Total	0.95 +/- 0.05

- Main offenders = Ribbon cables and Coax. cables
- Total of items measured = 0.95 +/- 0.05 Rn atoms.s⁻¹:

Central Cathode Cleaning

DRIFT II sees an excess of background events attributed to recoils of ²¹⁰Pb plated out on the detector. A likely region for build-up of ²¹⁰Pb is on the cathode wires.

Johanna Turk (University of New Mexico)

Mark Pipe (University of Sheffield)

(Occidental

College)

Next step is to apply the same cleaning procedure to MWPC grid and anode wires.

The DRIFT Dark Matter Team Cleans a Detector

0:07 / 3:09 📲 ۲

Nitric acid radon plate out cleaning

Cathode Cleaning Result

Main result: total RPR reduced by factor ~x5

Preliminary interpretation: cleaning has had a major effect on ²¹⁰Po (from ²¹⁰Pb) on central cathode, see remaining short-lived RPRs, and see rare RPRs now from MWPC

Central Cathode Cleaning

Background RPRs vs neutrons

neutron calibration (S recoils)

Preliminary interpretation: (i) remaining short-life cathode RPRs can be cut and reduced by flushing, (ii) remaining MWPC RPRs (~1/day)

RPR Background history

Run	Detector	Gas flow rate	RPR rate
	configuration	(chg/day)	(day^{-1})
(1) DIIa June 2005	Original state	500+/-20	
(2) DIIb Feb 2007	RG58, teflon cables 1		40+/-2
	removed and inner		
	detector sealed		
(3) DIIb July 2007	As above	10	51+/-4
(4) DIIb Feb 2008	As (2) (with slight 1		55+/-8
	cuts change)		
(5) DIIb Mar 2008	As (4) but cathode	1	3.4+/-2
	nitric cleaned		
(6) DIIb Aug 2008	After MWPC nitric		awaited
	clean		

Preliminary: background now ~1 event per 6 days i.e. x3000 total reduction

3D recoil reconstruction data

example ~100 keV S recoil

work in progress....

ϑ,φ direction sky map of data and simulation

DRIFTIIa electronics noise filter currently distorts y (and z) reconstruction

3D recoil reconstruction data

example ~100 keV S recoil

work in progress....

Recoil track pointing resolution

e.g. probability that Sulfur track is reconstructed to be within 30° of input initial direction (simulation)

e.g. for 15 cm drift distance 75% of 40 keV S recoils reconstructed within 30^o of initial direction

Directional Signature

²⁵²Cf neutron source placed on axes of DRIFT II. Show three components of the reconstructed track range for events passing selection cuts.

NIP

4000 6000 8000 10000 12000 14000 16000

NP

• depends on W

Head-Tail DRIFT II data analysis

Directed neutron runs (DRIFT IIc): +z, -z,+x, -y

Neutrons vs. WIMPs

Predicted NIPs spectrum for (left) neutron induced S recoils; and (right) from 1000 GeV WIMPs (using GEANT)

(left) Monte Carlo spectrum >1000 NIPs of S recoil zenith angles (z axis) from z-directed ²⁵²Cf neutrons; and (right) equivalent for 1000 GeV WIMP wind. The WIMP induced recoils are peaked slightly higher (using GEANT)

Head-Tail analysis

Conclusion

Comment: we will need the maximum information on events to show definitively that WIMPs exist in the galactic halo!

Low pressure TPC (1m³ DRIFT) has:

- low energy threshold (potential 3 keVr)
- recoil tracking 3D
- dE/dx discrimination
- range discrimination
- head-tail sense discrimination
- ability to identify <u>multi-prong events</u> (double-gamma - KK axion; recoil+gamma - DAMA?)
- background now <1/day.. nearly ready for full experiment

V₀

e-?

FUTURE - How big is big?

At 40 Torr a 1 ton target would occupy about 1/30th LNGS

At 160 Torr (an achievable pressure increase) a 1 tonne target would for instance be ~25% smaller than MINOS

If head-tail discrimination is introduced there is a further ~x10 reduction in target volume for a given directional sensitivity

Underground space is, in principle, not a cost driver

e.g. SuperK volume 50,000 m³ - 50 ton DRIFT enough for directional signals at 10⁻¹⁰pb SI

DAMA/Libra: annual modulation

192,000 kg.days data from Nal array (25 modules)

2-5 keV A=(0.0176±0.0020) cpd/kg/keV 8.8 σ C.L.

Still many questions, e.g.:

does the raw background look physical after signal subtraction?

- influence of PMT noise cuts
- explain raw background after signal subtraction

