Directional Detection of Dark Matter

- DRIFT IIa,b highlights
- Update on head tail

(UK work unless stated)

+Occidental, UNM....MIT

- Future and CYGNUS
- July 2007 run at Boulby

Burgos et al, arXiv:0707.1488 (sub Astrop.Phys, 2007) - first DII data Burgos et al, arXiv:0707.1758 (sub Astrop.Phys, 2007) - DII alpha results Lightfoot et al., Astrop Phys, 27 (2007) 490 Tziaferi et al., Astroparticle Physics 27 (2007) 326 Spooner. J, Phys. Soc. Japan <u>http://arxiv.org/abs/0705.3345</u> Alner et al., Nucl. Instrum. and Meth. in Phys. Res. A555 (2005) 173 Alner et al., Nucl. Instrum. and Meth. in Phys. Res. A 535 (2004) 644

DRIFT IIa, built & run in 1 yr

at the Boulby laboratory 2005

Stable and still working well...2007

OSC 13/08/07

Gamma rejection efficiency

Five x 0.52 mCi Co-60 sources placed on top of DRIFT-lla unshielded vacuum vessel and 0.575 days of live time data were recorded.

Table [Co-60 Res			
Nips Window	⁶⁰ Co rate minus	MC rate (Hz)	Rejection Factor Limits
	Background rate (Hz)		(90% C.L.)
1000-2000	$(-2+/-5)x10^{-4}$	77+/-1	$< 8 \times 10^{-6}$
2000-3000	$(-1+/-1)x10^{-4}$	24.8+/-0.5	$< 5 \times 10^{-6}$
3000-10000	$(2+/-6) \times 10^{-5}$	27.2+/-0.3	$< 3 \times 10^{-6}$
1000-10000	$(1+/-3)x10^{-4}$	125.2+/-0.7	$< 3 \times 10^{-6}$
1000-6000	$(1+/-3) \times 10^{-4}$	128.9+/-0.7	$< 3x10^{-6}$

Neutron efficiency with cuts

Efficiency vs NIPs with simple cuts

Efficiency vs NIPs with "background reducing" cuts

Radon Progeny Recoils (RPRs)

Dlla Background after RPR cuts

For typical analysis run - 4.36 days background, neutron run 0.97 hours (2005/6)

calibrated recoil efficiencies

Nips	Rate (Hz)	Efficiency (%)
1000 - 5000	0.075 ± 0.005	39 ± 3
2000 - 5000	0.066 ± 0.004	60 ± 7
2500 -5000	0.055 ± 0.004	70 ± 11

remaining rates

Nips	Rate (/day)	
1000 - 5000	20 ± 2	
2000 - 5000	15 ± 2	
2500 -5000	7 ± 1	

remaining events are <u>recoils</u> identified as radon progeny recoils (RPR)

> LIMIT published in Tziaferi thesis

• Total of items measured = 0.95 +/- 0.05 Rn atoms.s⁻¹:

DRIFT IIa - alpha track images

Based on the track finder analysis code using it is possible to reconstruct alpha and recoil tracks and Bragg curves

Alpha range analysis

Reconstructed 3D ranges of contained alphas

Observation of UNCHARGED Po

22% ²¹⁸Po produced uncharged

OSC 13/08/07

DRIFTII - end to end simulation

Validation of DRIFTII operation and technology

(1) SRIM2006 tracks (S and C) (2) Straggling (ball-up) (3) Drift in E-field (Garfield) (4) Diffusion (5) NIPs generation in MWPCs (Garfield, induced pulses etc) (6) Electronics simulation (7) Pulse generation (8) Simulated data produced in correct format

Head-tail simulation and data analysis

DRIFTII - end to end simulation

OSC 13/08/07

200 keV S-recoils

Φ

Right-Left results

	Average Ratio 1000-6000 Nips Left	Average Ratio 1000-6000 Nips Right
+z (left to right)	1.111 +/- 0.008	1.062 +/- 0.008
-z (right to left)	1.039 +/- 0.010	1.105 +/- 0.006

Conclusion (preliminary):

(1) even in crude DRIFT II may expect head-tail asymmetry at 10% level

(2) z, 1D analysis indicates it is there at ~10%

Confirmations by CYGNUS members

(1) MIT result with CCD readout (see CYGNUS web-site):

CCD images, 1D projections, of F-recoils from DT neutrons, show head-tail in CF-4

(2) A. Hitachi (Kochi, Japan): theory agrees (our experiments important for stopping power theory!)

(3) Indication also from UNM with micromegas readout

CAUTION: so head-tail depends strongly on readout projection - 1D, 3D, diffusion, energy

July 2007 Run (MIT, Shef, Oxy, UNM)

Objectives: (1) Improve <u>directional</u> electronics -notch filter and anti-aliasing (Ed Daw) -neutron runs Objectives: (2) RPR reduction -swap central cathode for clean one - done in a day -high gas flow test - achieved as expected July 2007 @ Boulby

OSC 13/08/07

Upgrade electronics test (MIT, Shef)

Scale-up Progress

UK: first demonstrated CS2 with micromegas

Shef/Saclay: bulk micromegas working (e.g. T2K TPC)

UNM: now have 300µm strip readout working (observe S-recoils)

OSC 13/08/07

OSC 13/08/07

12 R&D Challenges

- (1) Demonstration of 3D reconstruction at low threshold
- (2) Demonstration of low background underground
- (3) Demonstration of head-tail discrimination
- (4) Understanding of quench factors and calibrations
- (5) Selection of electronics and readout technology
- (6) Optimisation of gas mixtures and pressures
- (7) Demonstration of SD sensitivity with high pressure
- (3) Demonstration of detector mechanical engineering
- (9) Optimisation of veto shielding design
- (10) Determination of underground infrastructure and safety
 (11) Determination of relevant SUSY and cosmology
 (12) Demonstration of capability for axion sensitivity

(12) Demonstration of capability for axion sensitivity

Directional Community

Organisation	Country	Short description of role
University of Edinburgh	UK	DRIFT - background simulations, operations
UC, London	UK	TPC - detectors, vessels, gas, large scale design s
University of Nottingham	UK	Directional cosmology theory
University of Sheffield	UK	DRIFT - design, daq, construction, analysis, operatio n
TU - Darmstadt	Germany	DRIFT - kk-axion search, electronics, analysis
NCSR, Demokritos	Greece	TPC micro-readout, electronics and analysis
University of Ioannina	Greece	Theory and simulation s
University of Patras	Greece	kk- axion search
Saclay	France	MIMAC - Development of micromegas, TPC design
CNRS/IN2P3/LPSC	France	MIMAC - Electronics, readout, spin-dependent targe t
Institute Laue Langevin	France	MIMAC -Gas treatment and control, scintillation readout.
University of Granada	Spain	Spin dependent interaction (SUSY models)
University of Zaragoza	Spain	TPC - detector design, background, gas tests
Niels Bohr Institute	Denmark	Directional cosmology theory (TBC)
MIT	US	DRIFT - electronics, daq, simulations
University of Boston	US	DRIFT - electronic s
University of INew Mexico	JS	DRIFT - GEM readout, analysis, operation s
Occidental College, LA	US	DRIFT - construction, analysis, scintillation readout
[Kyoto Universit y	Japan	NEWAGE - cooperation]

14 institutes also signed for the ILIAS-NEXT TPC LOI

OSC 13/08/07

Roadmap Support EU-ASPERA US-DMSAG

Achievements summary

(1) DRIFT II works - stable, room temperature(2) Well calibrated - event by event discrimination

gamma rejection 10⁶, neutron efficiency

(3) Comparison of rock neutron with direct scintillator flux measurement (NUTs) Astrop. Phys 27(5)(2007) 326

(4) RPRs discovered - well understood, reduced radon

(5) Directionality 1D, 3D first sky-maps,

(6) End-to-end simulations working, understood

directional response matrix

(7) First evidence for head-tail, agreement (?) with simulations and theory

(8) Scale-up routes - micromegas works

NEXT steps: Show low energy 3D sensitivity & head-tail Solve RPRs

OSC 13/08/07