The ACoRNe Acoustic Simulator
Warning. This code has grown fairly organically over the past few years and there are no guarantees that it is bug free. Much of the code is fairly pedestrian; there are only a few lines in the entire code which are the key to the package working accurately and swiftly. If there are any problems or queries please contact Seán Danaher sean.danaher@unn.ac.uk who is responsible for hacking together the code.

The code consists of a number of functions and associated data files. There are 4 main functions.
1) Generate the Shower Parameters using “ShowerParam”. These are stored in a matrix of radial and longitudinal distributions “tsmc”. Longitudinally we use 20 cm bins from 0 to 20 meters. Radially we use 1 cm bins from 0 to 10 cm and 10 cm bins from 10cm to 1 m.

ShowerParam

function tsmc=ShowerParm(r,z,Eo,type)
%Shower Parameterisation Function
%Currently Supports
% 'CORSIKA'  -average of 100 showers (Needs data file Sm.mat)
% 'SVDParam' -SVD Parameterisation (Needs Data file Herwig.mat)
% 'Niess'- Niess and Bertin's Parameterisation
% 'Saund' - Saund Parameterisation
% 'Sloan' - Terry's Parameterisation 3/1/07
% 'Cylinder' - cylindrical Parameterisation for simple studies sigma=3cm
% Inputs:       r radial bin centres
%                 z longitudinal bin centres
%                 Eo Energy (between 10^5 and 10^12 GeV)
% SD/SB last mod 7/7/08
This should be fairly self explanatory. The only clever part of this is SVDParam and is explained in detail in our acoustic paper.
2) From the shower parameter matrix a number of points are thrown by a Monte Carlo. This is done by “MCGEn”
function points=MCGEn(jpri,lscale,rscale,n,imethod)
%MCGen Table based Monte Carlo Generator
%Inputs 
% jpri - 2D-Histogam whose statistics we wish to mimic:  size mxn
% lscale - bin edges of the rows size: (m+1)*1
% rscale - bin edges of the columns size: 1*(n+1)
% n - the number of points to be produced
%Last Mod 27/1/07  SD
This function computes throws according to the inverse integral of the CPD using lookup tables with piecewise cubic interpolation by default. I have no idea if this method is original. I have not seen this done this way before so please acknowledge if you use this method.  The points are generated in polar coordinates (r,theta). The value of n needed for clean pulses depends on the distance and angle. For small distances (<1km) and angles greater than a few degrees n may need to be as large as 1e8. I tend to use 5e6 and loop as large matrices can cause the computer to page to disk. For >1km in the pancake values of n as low as 1e4 may be sufficient. The units of r are cm.
3) An attenuation method needs to be chosen before the shower is propagated to the observer. This is done by “attenfna”.
function y=atten_fna(f,dkm,opt)
% ATTEN_FNA calculates attenuation in Sea water.
% inputs f  (Hz) and dkm (distance in km)
% outputs attenuation as a fraction of the pressure remaing at the particular frequency.
% Case 1 Learned's Technique based on Lehtinen et al. w0=2.5e10.
% Case 2 Polynomial fit to Fig 1 Lehtinen et al
% Case 3 Neiss and Bertin's Complex attenuation
% Case 4 Ainslie and McColm J. Acoust. Soc. AM. 103 (3) 1671 1998
% Case 5 No attenuation
% Case 6 Francois and Garrison
% Case 7 ACoRNe (Combined A&Mc and N&B);
% Case 8 Fischer & Simmons (Note there is a bug in this).
% Last Mod SD 26/1/07
This should be self explanatory. Note there is a bug in Case 8, but as the “Francois and Garrison” and the “Ainslie and McColm” have essentially superseded this I have not been diligent in tracking this down. Only case 7 is original here and forms part of our Acoustic paper. 
4) The acoustic integrator.

function [p,pw,Exyz]=kernelfr2(points,Do,energy,atten,nr,fs,m,c)
% UltraFast Acoustic Integral function
% Inputs Points [x,y,z] where z is oriented along the axis of the shower,
% units (m) size n x 3 where n is typically about 10^6. Note the value of n is very
% distance dependent. At 100m c 10^8 points are needed to give an ultra-clean pulse.
% At 10km c 10^4 points are sufficient.
%
% Do: is the position of the observer [x0,y0,z0] in meters
%
% energy: is total energy of the shower 10^energy GeV. i.e. if energy = 11
% then the total shower energy is 10^20 eV.
%
% atten; is a flag and is passed to attenfna.
%
% nr: rotational symmetry is exploited by rotating the shower axially. a
% value of 100 is typical. (default 1)
% fs: sampling frequency (default 1MHz)
% m: mean distance from observer to shower. Calculated if not supplied
% OUTPUTS
% p the pulse (sampling rate 1MHz default) Note: zero tome is at the mean shower
% transit time ignoring complex attenuation
% pw the FFT of the pulse (sampling rate 1MHz default)
% Exyz is a scaled version of the Velocity Potential
% SD Last mod 7/7/08
This is the heart of the code. This works in Cartesian coordinates. The new bit is that the velocity potential is calculated via a histogram. This is scaled by distance differentiated and the attenuation is calculated in the frequency domain.
Here is simple code to generate a pulse @ 1km and plot
rsc=[.5:9.5 15:10:105]; %radial bin centres (cm)
zsc=10:20:2000;   %Longitudinal Bin Centres (cm)
Eo=1e11; %Primary Energy
Do=[1e3 0 7.5]; % Position of observer 
fs=1e6; %sampling frequency
t_axis=(-512:511)/fs; %time axis for plot (default 1024 points)
atten=1; % Learned's attenuation
nmc=1e4; % Number of MC points 
tsmc=ShowerParm(rsc,zsc,Eo,'Sloan');
%as the 10-100cm bins are 10x wider need to scale by a factor of 10 
tsmc=tsmc*diag(kron([1 10],ones(1,10)));
%generate MC points. Note bin EDGES need to be provided 
pointsc=MCGEn(tsmc,[0 zsc+10],[0 rsc+[0.5*ones(1,10) 5*ones(1,10)]],nmc);
%Convert to Cartesian
[x,y,z]=pol2cart(rand(nmc,1)*2*pi,pointsc(:,2),pointsc(:,1));
% Convert fom cm to m 
points=[x y z]*1e-2;
tic % start stopwatch
p=kernelfr2(points,Do,log10(Eo),atten,10);
toc %generate time taken for integration
% Now plot
set(gca,'fonts',15)
plot(t_axis*1e3,p),xlabel('Time (ms)'),ylabel('Pressure (Pa)')  
set(gca,'xlim',[-0.4 0.4])
title('Sample Pulse at 1 km')
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There is a bit of noise as only 1e4 points. The actual integration takes 47 ms on my PC. Of course there are other overheads 
