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Outline

* Bipolar acoustic pulse generation - theory
and practice

* Pool results
* Initial deployment
* Further work - possibilities
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Introduction

* Have access to Rona hydrophone array

* To inject bipolar acoustic pulses in water -
mimic neutrino shower generated signal

: Progressmn lab tank - pool - open sea
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Introduction - signal generation

* Use signal processing techniques to deduce
required hydrophone excitation signal that
produces bipolar acoustic pulse

Input

(hyarop one)

output

* Knowing system and its required output
vields the required excitation pulse
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System modelling - convolution

* Convolution: a mathematical operator used
to define an output (o/p) from any Linear
Time Invariant (LTIl) system in response to

any input (i/p)
y(t) = x(t) * h(t)
y(t): o/p, x(t): i/p, *: convolution integral, h(t): impulse response

* Time domain is 'somewhat' complicated
when considering more complex signals and
systems

* Hence, calculate in frequency domain
’ AHENEY ACORVE



Modelling - Frequency domain

* An alternative method of describing LTI
systems

Y(s) = X(s) . H(s)

* Resulting o/p converted to time domain
using Inverse Fast Fourier Transform (IFFT)

y(t) = IFFT(Y(s))

* Impulse response difficult to obtain, hence
use step response
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Modelling - Step response

* Impulse response difficult to get in practice

* Step response is time integral of impulse
response and this can be exploited:

Hydro
step | system
1 H()

d/dt

Imp. resp.

* Assuming that hydrophone is a LTI system:

step | d/dt

Imp. resp. =

Hydro
system
H(t)

o/p

* Deconvolution finds i/p for required o/p
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System modelling - practice

* Practical implications:

- Differentiating noise gives even noisier signals,
nence require very clean input signal

- Reflections in the tank produces incomplete step
response

* Fit a transfer function (H(s)) to the step
response in order to model the system

H(s) = Y(s) / X(s)

H(s): TF, Y(s): o/p Laplace tr., X(s): i/p Laplace tr.
H(s): also Laplace transform of impulse response h(t)
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From model to excitation pulse

* Differentiating Gaussian signal creates
bipolar pulse (desired output)
* Deconvolution (in frequency domain) of
this signal and modelled system function
generates desired excitation pulse

X(s) = Y(s) / H(s)
* Transform to time domain

X(t) = IFFT(X(s))

ACORVE
D2



voltage [V]

Pool - hydrophone modelling

* Hydrophone step response is recorded at

various distances

raw pool data, step response, d=0.22m

time [ms]

voltage [V]

raw pool data, step response, d=1m
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Data dejittering

* Signals combined into a common waveform

dejittered pool step data, d=0.22m
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Hydrophone data fitting

* 5" order TF used to model hydrophone
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Estimated sinusoidal response

* Technique verification

Measured and estimated single cycle sin response
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Estimated differentiated Gaussian
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Excitation signal

* Desired acoustic pulse and the estimated
hydrophone driving electrical signal

Desired bipolar acoustic pulse Excitation pulse
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Pool results

* Measured bipolar acoustic pulse

voltage [V]
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voltage [V]
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Pool results (...cont)

Acoustic signal (515 combined), d = 0.4m
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Rona - deployment

* Bipolar acoustic pulses introduced 20m
below the surface

* Expecting data analysis results

* Sound Velocity Profile (SV

SVP ru
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Future work

* Repeat Rona deployment at different sea
state and over different hydrophones

* All previous work done using an
omnidirectional hydrophone

* An array development using 6 - 10
hydrophones

* Line array - acoustic pancake?

- Fully autonomous for great depths
- Surface deployment => PA, easy DAQ
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Conclusions

* Successfully modelled hydrophone

* The bipolar acoustic pulses generated in
the pool

* Awaiting for the analysis of the Rona data
* Looking into developing an array
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Thank you

Questions ?

http://pppa.group.shef.ac.uk/acorne.php
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