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Motivation
 Probing Ultra High

Energies with
neutrinos

 In addition to
cosmogenic neutrinos
other theories such as:
 Strongly interacting

neutrinos
 New neutral primaries
 Violation of Lorenz

invariance
 Decaying

supermassive dark
matter

 Instantons, excitons
 etc…

 Many of these models
predict, e.g. enhanced
neutrino cross-
sections at ultra high
energies

Neutrino-nucleon
cross-sections
for low- scale
models of
quantum gravity
involving e.g.
extra dimensions



Acoustic Detection Principle
 Fast thermal energy

deposition (followed by slow
heat diffusion)

 Results in a quasi-
instantaneous temperature
increase and expansion of
the medium leading to
“acoustic shock” sound pulse

 Double derivative leads to
classic bipolar pulse shape

 Pulse width Δt is related to
the transverse shower
spread

 Pulse height h is defined by
the medium: h∝β/Cp where b
is the co-efficient of thermal
expansivity and Cp is the
specific heat capacity
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Acoustic Detection Principle
 Cylindrical volume

over which the
hadronic energy is
deposited is typically
10m-20m long and a
few centimetres wide

 In analogy with light
diffraction through a
slit the acoustic
signal propagates in
a narrow “pancake”
perpendicular to the
direction of the
shower



Confirmation of Technique

 Signal amplitude vs. energy deposition
 Pressure proportional to Energy - proves

predicted coherent effect

SULAK ET AL
NIM 161 (1979) 203

 Signal amplitude vs. water temperature -
warmer is better!

 P proportional to β(T) - thermo-acoustic
origin

 Results from experiments in late 1970s
confirmed bi-polar acoustic pulse in a test
beam at Brookhaven



Current Activities
 Mostly in the form of feasibility studies

and/or R&D programmes
 Following is an arbitrary classification

(personal)
Activities around already funded optical

Cerenkov telescopes
 AMADEUS at ANTARES   
 SPATS at ICECUBE 
 Lake Baikal 

Activities around pre-existing (military)
hydrophone arrays
 SAUND 
 ACORNE 



Current Activities (cont.)
 Other test sites and environment monitoring

ONDE at NEMO 

Sensor development
 Erlangen group (Ceramics) 
 Pisa group (Optical fibre) 

Calibrators
ACORNE group 
Valencia group 
(others)

 Signal processing, sensitivity calcs
 All!



Stanford Acoustic Underwater Neutrino
Detector (SAUND)

 The SAUND experiment
 Stanford based venture

using the AUTEC array,
naval hydrophones in the
Bahamas

 SAUND I: 7 hydrophones
read out

 Raw data filtered before
acquisition



SAUND
SAUND analysis

requires multi-phone
co-incidences and
fiducial cuts to remove
the remaining multi-
polar backgrounds

 Published sensitivity for
195 days of data with
SAUND I

 SAUND II is reading out
~56 hydrophones and
started data taking in
summer 2006



Ocean Noise Detection Experiment
(ONDE)

 ONDE was deployed
in January 2005 at
the NEMO Test Site in
Sicily

 4 hydrophones werer
read out (5’ per hour)
for ~2 years

 Full analysis of noise
(by hour, month, etc.)

 Bio coincidences seen



Lake Baikal
 Co-incidence of surface (ice) based scintillators and hydrophones
 Data taken at the Lake Baikal NT-200 site during spring ice cover 2002 and

2003
 Analysis in progress looking for features in acoustic signals in coinc. with EAS

 New acoustic module with 4 hydrophones deployed in April 2006
 100m, autonomous, self-triggered, on-detector processing
 First results to be presented at ICRC conference



Sensor Development
 Can we design and build

bespoke acoustic sensors with
performance well-matched to
expected signal?

 Requires a good theoretical
model of piezo and the
coupling

 Predictions using equivalent
circuits  Further detailed

understanding of piezos is
under study

 At the microscopic level
piezos can be modelled using
PDEs for an anisotropic
material

 Solve using Finite Element
Analysis

 Use Laser Interferometry to
compare results
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Sensitivity Calculations

 Effective volume for a 1 km3

array instrumented with
different numbers of
ANTARES-style acoustic
storeys

 No improvement in effective
volume above 200AC/km3

 Detection threshold 5mPa

 Current studies are concentrating
on the effects of refraction

 Linear Sound Velocity Profile
(SVP) distorts the acoustic
pancake into a hyperbola



Sensitivity Calculations

 Effective volume for hybrid arrays
involving extending beyond IceCube with
strings of radio and acoustic sensors
 IceCube plus  5x2 radio and 300
acoustic sensors per string
 See D. Besson, astro-ph/0512604

 Considering Hybrid arrays
incorporating optical, radio and
acoustic technologies
 Cross-calibration between
technologies should be possible
Yields up to 20 events per year



In Summary …
 The acoustic detection of UHE neutrinos is a

promising technique that would complement high
energy neutrino detection using the optical and
radio techniques

 It is likely that any development of a large volume
acoustic sensor array would be in parallel with the
infrastructure of first and second generation optical
Cerenkov neutrino telescopes

 This is already starting to happen (ANTARES-
AMADEUS, IceCube-SPATS-AURA)

 Multi-messenger observations of astrophysical
objects clearly provide valuable information, this is
also true at ultra high energies

 For a future Astroparticle Physics I3 (HEAPNET) it
will be important to identify and stress these
synergies and complementarities


