

Status of Acoustic Detection

Lee Thompson University of Sheffield

TeV Particle Astrophysics II Madison, Wisconsin 29th August 2006

# Motivation

- If GZK cut-off exists then observation of GZK neutrinos is important
- If not then some kind of top-down model is necessary, e.g.
  - Strongly interacting neutrinos
  - New neutral primaries
  - Violation of Lorenz invariance
  - Decaying supermassive dark matter
  - Instantons, excitons
  - etc...
- Many of these models predict, e.g. enhanced neutrino cross-sections at ultra high energies





#### **Acoustic Detection Principle**



- Fast thermal energy deposition (followed by slow heat diffusion)
- Results in a near-instantaneous temperature increase and material expansion giving rise to an "acoustic shock" sound pulse
- This pressure pulse is related to the double derivative of the Heaviside step function of the temperature rise and leads to a characteristic expected bipolar pulse shape
- h is defined by the properties of the medium:
  - *h*∝β/C<sub>p</sub> where β is the co-efficient of thermal expansivity and C<sub>p</sub> is the specific heat capacity
- ∆t is defined by the transverse spread of the shower

#### **Acoustic Detection Features**



- Typical cylindrical volume over which the hadronic energy is deposited is 10m long by a few centimetres wide
- The energy deposition is instantaneous with respect to the signal propagation
- Hence the acoustic signal propagates in a narrow "pancake" perpendicular to the shower direction in analogy with light diffraction through a slit



#### Contents



- **Current Acoustic Sites** 
  - Future Projects

Sensor development

Calibration

- Simulations
- Sensitivity Calculations







#### **Existing Acoustic Sites**



The SAUND experiment

- Stanford based venture using the AUTEC array, naval hydrophones in the Bahamas
- First limit paper published based on 195 days reading out 7 hydrophones





# **Existing Acoustic Sites**

- Co-incidence of surface (ice) based scintillators and hydrophones deployed in water and ice
- Data taken at the Lake Baikal NT-200 site during spring ice cover 2002 and 2003
  Analysis in progress looking for features in acoustic signals in coinc. with EAS



100m, autonomous, self-triggered, on-detector processing

#### **Existing Acoustic Sites**

ROV

OvDE connection



- ONDE the Ocean Noise Detection Experiment was deployed in January 2005 at the NEMO Test Site in Sicily
- 4 hydrophones read out (5' per hour) since early 2005
- Full analysis of noise (by hour, month, etc.)
- Bio coincidences seen
- See poster by Giorgio Riccobene for more information







20051209-140703-03.wav

averade

95% confidence interval



- Rona hydrophone array, a military array in Scotland used by the ACORNE collaboration
- 2 weeks of <u>unfiltered</u> data taking in December 2005
- 8 hydrophones read out continuously at 16bits,140kHz - a total of (2.8Tb)
- Data are passed through a number of triggers including a matched filter prior to analysis
- Average spectra show hydrophones are well-balanced



10

20051209-140703-04.wav

averade

95% confidence interval

# **Future Projects**

Cable to shore

**Junction Box** 

- Deployment of acoustic sensors in the ANTARES optical Cerenkov neutrino telescope
- 2 different acoustic storeys under consideration

buo

- "Instrumentation Line" with 3 acoustic storeys to be deployed in the first half of 2007
- Look for co-incidences at different distance scales (1m, 10m,100m)
- Also use existing acoustic transceivers to test 3D reconstruction
- More in talk by Kay Graf in WG7

## **Future Projects**

- IceCube is a natural place to extend the infrastructure of an optical array to incorporate radio and acoustic sensors
- SPATS the <u>South</u> <u>Polar Acoustic Test</u> <u>Setup is designed to</u> test acoustic sensors in ice parallel with IceCube deployment
- Planned sensors in 3 IceCube holes





More in parallel session talk

by Stefan Hundertmark

#### **Sensor Development**

- Can we design and build bespoke acoustic sensors with performance well-matched to expected signal?
- Requires a good theoretical model of piezo and the coupling
- Predictions using equivalent circuits

example: piezo coupled to tank wall

180 **Points: Measurement** Ð Line: Prediction sensitivity dB 190 data sheet: 192dB=.25mV/Pa -200 <u><u></u></u> 70 80 90kHz 10 20 30 50 60



Further detailed understanding of piezos is under study

100kHz

- At the *microscopic* level piezos can be modelled using PDEs for an anisotropic material
- Solve using Finite Element Analysis
- Use Laser Interferometry to compare results

## **Sensor Calibration**

- The SPATS team have calibrated their sensors using
  - a large water volume (78m x 10m x 5m)
  - a fully calibrated reference hydrophone
  - a broadband transmitter
- A total of 75 sensors have been calibrated in water
- Plot shows a summary of the measured sensitivities of all SPATS sensors



- Where this is not possible other techniques are also available to perform accurate and absolute calibration of acoustic sensors
- These include the <u>reciprocity method</u> using 4 measurements with 3 <u>uncalibrated</u> hydrophones ideally in free field (butterfly baffle kills reflections) (Ardid et. al, UPV)







Plans to use an acoustic calibration system based on this method at Rona

## **Acoustic Calibration**

- Previous study uses a single source
- However, as we have seen, a neutrino is a line source
- Question: how many bipolar sources are needed to generate a suitable pancake?



- 1.2x10<sup>20</sup>eV pulse simulated
- Ikm from source
- N sources deployed over 10m with (10/N)m spacing
- Study the angular profile as a function of the number of sources
- Of the order of 6 to 10 hydrophones (minimum) are needed



# **Material Properties**

- Also developing a fuller understanding of propagation of acoustic waves in salt and ice
- Many things to consider including:
  - Cost of drilling
  - Scattering (gets worse as grain size increases) better for ice
  - Noise
  - Conditions are temperature dependant not all ice is the same!
- More information in WG7 talk by Buford Price



|      | grain<br>size | λ <sub>scatt</sub> |          | λ <sub>abs</sub> |                      |
|------|---------------|--------------------|----------|------------------|----------------------|
|      |               | 10⁴ Hz             | 3x10⁴ Hz | 10⁴ Hz           | 3x10 <sup>4</sup> Hz |
| lce  | 0.2 cm        | 1650 km            | 20 km    | 8-12 km          | 8-12 km              |
| NaCl | 0.75 cm       | 120 km             | 1.4 km   | 3x104 km         | 3300 km              |

# **Sensitivity Calculations**

- Effective volume for a 1 km<sup>3</sup> array instrumented with different numbers of ANTARES-style acoustic storeys
- No improvement in effective volume above 200AC/km<sup>3</sup>
- Detection threshold 5mPa





- Detailed acoustic
  simulation in the Med.
- Sensitivity of a single hydrophone to the EM part of the cascade
- Includes effects of complex attenuation

See astro-ph/0512604

## **Sensitivity Calculations**



- Effective volume for hybrid arrays involving extending beyond IceCube with strings of radio and acoustic sensors
- See astro-ph/0512604
- See talk in parallel session by Justin Vandenbroucke

- Hybrid arrays: optical, radio and acoustic technologies
- 5x2 radio and 300 acoustic sensors per string + IceCube
- Yields 20 events per year
- Cross-calibration possible



## **Sensitivity Calculations**



- Sensitivity of a large acoustic array to the <u>hadronic</u> component of neutrino induced cascades
- 200 acoustic sensors per km<sup>3</sup>
- 5 years of operation
- 5mPa sensor threshold applied
- Dotted line: huge volume (50km x 30km x 1km)
- NB no refraction in here

- Current studies are concentrating on the effects of refraction
- Linear SVP distorts the acoustic pancake into a hyperbola

# Current Activities From Rolf Nahnhauer

# **ARENA 2006 Summary Talk**

| group                                 | experiment         | activities                                                                                                                                         |
|---------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Stanford                              | SAUND              | data taking, signal processing, calibration , simulation                                                                                           |
| INR1                                  | AGAM, MP10         | signal processing, calibration , simulation                                                                                                        |
| INR2, Irkutsk                         | Baikal             | signal processing, noise studies, in-situ tests at Baikal                                                                                          |
| ITEP                                  | Baikal,<br>ANTARES | detector R&D, accel. tests, in-situ tests at Baikal, signal proc., noise st.                                                                       |
| Marseille                             | ANTARES            | detector and installation R&D, calibration, noise studies, simulation,                                                                             |
| Erlangen                              | ANTARES,<br>KM3NET | detector R&D, accel. tests, calibration, simulation, noise studies, in-<br>situ test measurements                                                  |
| Pisa, Firenze,<br>Genova              | KM3NET             | detector R&D                                                                                                                                       |
| Rome, Catania                         | NEMO               | installation R&D, noise studies, simulation                                                                                                        |
| Lancaster, IC, UNN,<br>UCL, Sheffield | ACORNE,<br>KM3NET  | simulation, signal processing , calibration                                                                                                        |
| U. Texas                              | Salt Dome          | detector R&D, attenuation studies, material studies                                                                                                |
| Berkeley, DESY,<br>Stockholm, Uppsala | IceCube            | detector R&D, accel. tests, material studies, simulation, noise<br>studies,<br>in- situ test measurements (SPATS) <b>new results at ARENA 2006</b> |

## Summary

- Multi-messenger observations of astrophysical objects clearly provide valuable information, this is also true at ultra high energies
- The acoustic detection of UHE neutrinos is a promising technique that would complement high energy neutrino detection using the optical and radio techniques
- It is likely that any development of a large volume acoustic sensor array would "piggy back" the infrastructure of first and second generation optical Cerenkov neutrino telescopes
- This is already starting to happen (ANTARES, SPATS-IceCube)
- Much activity in the field in many different areas