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1 Review of Lecture 6

Last time we studied the 4–momentum transfer when two bodies scatter off
each other. If the incident particles have 4–momenta p1 and p2, and these
scatter off each other in some way, yielding bodies with 4–momenta p3 and
p4, then where body 1 is identified with body 3, the 4–momentum trans-
fer is q = p3 − p1, which is the same thing as p2 − p4. The quantity q2 is
Lorentz invariant, that is, it takes the same value when computed by any
non-accelerating observer.

We next studied a special case, elastic scattering of a body off an initially
stationary target of mass Mt in the lab. We defined the energy transfer ν as
the difference between the final state energy of the target after it is struck
and its initial rest energy, Mtc

2, or equivalently the energy lost by the incident
particle due to the collision. We discovered that q2 is related to Mt and ν for
an elastic collision by

q2 = 2Mtν (1)

In the last lecture I mistakenly wrote (qc)2 = 2Mtν, but this is wrong because
the units on the right are not energy squared, but energy times mass. If we did
want an expression for qc, this would be (qc)2 = 2Mtc

2ν. I apologise for this
mistake. Furthermore Vitaly has been reading my notes, and he has pointed
out that the features on the plot of cross section versus W that I showed
from the deep inelastic scattering experiments last time are not in fact elastic
scattering off constituent quarks. So, I am going to talk a bit more about this
stuff first, correct my mistake from last time, and then move on to discuss a
new topic. I’m sorry to introduce mistakes in a lecture; my only excuse is that
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this is the first time I’ve taught this material. A set of corrected lecture notes
from last time has been emailed out to all of you.

After deriving q2 = 2Mtν for elastic scattering, we asked the question, what
would we see if the scattering was off a constituent of the target particle, when
the target particle is something composite. This depends strongly on how the
particle is constituted. But, suppose the particle actually consists of relatively
low momentum constituents without too strong of a binding energy to each
other. In this case, we might expect to see the scattering equation become
q2 = 2xMtν, where xMt is the mass of the constituent off which the incident
particle is scattering, pseudo–elastically. The diagram in the previous set of
notes illustrates this. However, how do we know this is happening in an experi-
ment? Suppose we build a detector that measures the by-products of multiple
collisions, each time measuring q2 and ν, and calculating the parameter x.
Next, a histogram is constructed where the number of events as a function of
x is plotted. What you might expect to see is a peak at x = 1 due to the
scattering off the incident projectile off the whole target, and perhaps other
peaks for the scattering of the incident projectile off well defined constituents.

A good example of a process where this is observed is in the scattering of
electrons off nuclei, for example 4

2He, where the incident electron energy is a
few hundred MeV. Figure 1 shows the cross section as a function of the energy
E ′ of the scattered electron.

The same effect can be seen when you scatter higher energy electrons off in-
dividual protons. Figure 2 shows the cross section as a function of the energy
E ′ of the scattered electrons for electrons scattering off a stationary target
containing protons at DESY. Once again, there is a high energy elastic scat-
tering peak. The peaks at lower energies are due to scattering off resonances
- particles formed temporarily within the nucleus. These three resonances are
the ∆(1232), N(1450), and ∆(1688).

It turns out that, though one can infer the existence of quarks by studying
the inelastic scattering of electrons off a proton target (hydrogen gas), the
quarks have such high Fermi velocity that these peaks are smeared out, and
the analysis to infer their existence is more subtle than I thought. If you want
to read about it, Perkins’s book, ’An Introduction to High Energy Physics’,
3rd edition, has a nice discussion in sections 8.2 and 8.3. Figures 1 and 2 are
taken from this secondary source. The plot that I showed in the last lecture
of results from Friedman, Kendall and Taylor, has resonances in it rather like
those in Figure 2. These peaks are due to resonant particle production, not
elastic scattering off constituent quarks as I mistakenly claimed last time.
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Figure 1: Cross section as a function of scattered energy for 400 MeV elec-
trons incident on a stationary helium target. Note the peak at high energy,
corresponding to x = 1. There is a less well defined bump between 300 and 360
MeV due to scattering of the electrons off individual protons in the nucleus.
The smearing is due to the Fermi momentum of the nucleons; they are far
from being stationary, and this smears the final state energy of the electrons
after they have struck.

2 Rapidity

As our next topic, I wish to start discussing two variables that are in common
use in accelerator physics, which derive from the fact that in accelerators the
incident velocities of the particles taking part in a collision are along the beam
axis. This leads to the definition of various quantities that are either with
respect to boosts to the rest frames of observers moving at different velocities
parallel to the beam axis, or others that although they are not invariant have
transformation properties that are easy to handle and useful for analysis.
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Figure 2: Cross section as a function of scattered energy for 4.88 GeV electrons
incident upon a proton target. Note the resonances at lower E ′ than that of
the elastic electron–proton scattering peak.

Firstly, start with the energy–momentum–mass relation for a particle of rest
mass M .

E2 = p2
xc

2 + p2
yc

2 + p2
zc

2 +M2c4 (2)

The usual convention in accelerator physics is to take the beam axis as the
z–axis, so we will be considering quantities as they appear to observers who
are Lorentz boosted with respect to the z axis, not the x axis as we have so
far been assuming. There is no difficulty here as long as you write the correct
Lorentz transformations. For the components of a 4–displacement,

ct′ = γ(ct− βz)
x′ = x
y′ = y
z′ = γ(z − βct).

(3)
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For the components of a 4–momentum

E ′/c = γ(E/c− βpz)
p′x = px
p′y = py
p′z = γ(pz − βE/c).

(4)

Since the x and y components of momentum of a particle, and also its rest
mass, are all invariant with respect to boosts parallel to the z axis, we gather
up these quantities and define them collectively as the transverse mass MT

(not to be confused with the target mass Mt in the last section and lecture).

M2
T c

4 = p2
xc

2 + p2
yc

2 +M2c4. (5)

You may consider it a little strange that we may want to give symbols to quan-
tities who are only invariant with respect to a set of observers whose velocities
are all parallel to a single z axis. What is special about these observers? In an
accelerator, one is often colliding together particles whose momentum is not
equal and opposite, but whose directions are down a common beam z axis. In
this case, the centre of mass frame is moving at some velocity down the z axis,
so you will often wish to study physics in this frame. However, if you are stuck
in the lab frame, you are boosted with some velocity vz = βc with respect to
this frame, and the direction of the boost is parallel to the beam axis.

As well as the transverse mass, we also define a quantity called the rapidity,
y. The definition of the rapidity of a particle is:

y =
1

2
ln

(
E + pzc

E − pzc

)
. (6)

Why would you want to define such a quantity? Well, suppose we are dealing
with a very high energy product of a collision, in the highly relativistic regime.
Suppose now this particle is directed essentially in the XY plane, perpendicu-
lar to the beam direction. Then pz will be small, and the rapidity will be close
to 0, because you get the log 1. Now let the same highly relativistic particle be
directed predominantly down the beam axis, say in the +z direction. In this
case, E ' pzc, and y → +∞. Similarly, if the particle is travelling down the
-ve beam axis, the E = −pzc, and in this case you get the natural log of a very
small number, and y → −∞. So, the rapidity is zero when a particle is close
to transverse to the beam axis, but tends to ±∞ when a particle is moving
close to the beam axis in either direction. It’s related to the angle between
the XY plane and the direction of emission of a product of the collision.

There are various neat ways of writing the rapidity, making use of what we
know about logs. Taking the 1/2 into the ln and making it a power, you can
write y as

y = ln

√
E + pzc

E − pzc
= ln

(
E + pzc√

E − pzc
√
E + pzc

)
. (7)
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Using the energy–momentum–mass relation this becomes

y = ln

(
E + pzc√
E2 − p2

zc
2

)
= ln

(
E + pzc

MT c2

)
. (8)

The next neat expression for rapidity is found by using hyperbolic tangents.
Recall that tanh θ = (eθ − e−θ)/(eθ + e−θ). We write

y = tanh−1
(

tanh
(

ln
(
E+pzc
MT c2

)))
.

= tanh−1

(
exp

„
ln E+pzc

MT c
2

«
−exp

„
− ln E+pzc

MT c
2

«
exp

„
ln E+pzc

MT c
2

«
+exp

„
− ln E+pzc

MT c
2

«
)

= tanh−1

(
E+pzc

MT c
2 −

MT c
2

E+pzc

E+pzc

MT c
2 +

MT c
2

E+pzc

)

= tanh−1

(
(E+pzc)

2−M2
T c

4

MT c
2(E+pzc)

(E+pzc)2+M2
T
c4

MT c
2(E+pzc)

)
= tanh−1

(
(E+pzc)2−M2

T c
4

(E+pzc)2+M2
T c

4

)
= tanh−1

(
E2+2Epzc+p2zc

2−M2
T c

4

E2+2Epzc+p2zc
2+M2

T c
4

)
= tanh−1

(
2Epzc+2p2zc

2

2E2+2Epzc

)
= tanh−1

(
pzc(E+pzc)
E(E+pzc)

)
y = tanh−1

(
pzc
E

)
.

(9)

Now let us show how rapidity transforms under Lorentz boosts parallel to the
z axis. Start with Equation 6 and perform a Lorentz boost on E/c and pz

y′ = 1
2

ln
(
γE/c−βγpz+γpz−βγE/c
γE/c−βγpz−γpz+βγE/c

)
= 1

2
ln
(
γ(E/c+pz)−βγ(E/c+pz)
γ(E/c−pz)+βγ(E/c−pz

)
= 1

2
ln
(
E/c+pz
E/c−pz

γ−βγ
γ+βγ

)
= 1

2
ln
(
E+pzc
E−pzc

)
+ ln

√
1−β
1+β

.y′ = y + ln
√

1−β
1+β

.

(10)

This can be simplified further by noting that

ln
√

1−β
1+β

= tanh−1
(

tanh ln
√

1−β
1+β

)
= tanh−1

(q
1−β
1+β
−
q

1+β
1−βq

1−β
1+β

+
q

1+β
1−β

)
= tanh−1

(
(1−β)−(1+β)
(1−β)+(1+β)

)
= − tanh−1 β.

(11)
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This means that upon Lorentz transforming parallel to the beam axis with ve-
locity v = βc, the equation for the transformation on rapidity is a particularly
simple one,

y′ = y − tanh−1 β. (12)

This particularly simple transformation law for y has an important conse-
quence. Suppose we have two particles ejected after a collision, and they have
rapidities y1 and y2 when measured by some observer. Now, let some other
observer measure these same rapidities, and obtain y′1 and y′2. the difference
between the rapidities in the unprimed frame is y1 − y2, and in the primed
frame it becomes

y′1 − y′2 = (y1 − tanh−1 β − (y2 − tanh−1 β)) = y1 − y2. (13)

Therefore the difference between the rapidities of two particles is invariant with
respect to Lorentz boosts along the z–axis. This is the key reason why rapidi-
ties are so crucial in accelerator physics. Rapidity differences are invariant
with respect to Lorentz boosts along the beam axis. Rapidity is often paired
with the azimuthal angle φ at which a particle is emitted, so that the angle of
emission of a particle from an interaction point is often given as the coordinate
pair (y, φ). This way, the angular separation of two events, (y2 − y1, φ2 − φ1)
is invariant with respect to boosts along the beam axis. Histograms binned in
either the angular separation of events or the rapidity separation of events can
be contributed to by events whose centre of mass frames are boosted by arbi-
trary velocities with respect to the rest frame of the detector, the lab frame.
The resulting histograms are undistorted by these centre of mass frame boosts
parallel to the beam axis, as the dependent variable is invariant with respect
to this sub–class of Lorentz boosts.

3 Pseudorapidity

The only problem with rapidity is that it can be hard to measure for highly
relativistic particles. You need both the energy and the total momentum, and
in reality it is often difficult to get the total momentum vector of a particle,
especially at high values of the rapidity where the z component of the momen-
tum is large, and the beam pipe can be in the way of measuring it precisely.
However, there is a way of defining a quantity that is almost the same thing
as the rapidity which is much easier to measure than y for highly energetic
particles. This leads to the concept of pseudo–rapidity η.

We start from the definition of y,
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y = 1
2

ln
(
E+pzc
E−pzc

)
= 1

2
ln

(
(p2c2+m2c4)

1
2 +pzc

(p2c2+m2c4)
1
2−pzc

)
.

(14)

Knowing that for a highly relativistic particle, pc is far bigger than mc2, we
factor pc out of each square root and use a binomial expansion to approximate
what is left inside.

y = 1
2

ln

(
pc
“
1+m2c4

p2c2

” 1
2
+pzc

pc
“
1+m2c4

p2c2

” 1
2−pzc

)
' 1

2
ln

(
pc+pzc+

m2c4

2pc
+···

pc−pzc+m2c4

2pc
+···

)
' 1

2
ln

(
1+ pz

p
+m2c4

2p2c2
+···

1− pz
p

+m2c4

2p2c2
+···

)
.

(15)

Now pz/p = cos θ, where θ is the angle made by the particle trajectory with
the beam pipe, and hence we have

1 +
pz
p

= 1 + cos θ = 1 +

(
cos2 θ

2
− sin2 θ

2

)
= 2 cos2 θ

2
. (16)

Similarly

1− pz
p

= 1− cos θ = 1−
(

cos2 θ

2
− sin2 θ

2

)
= 2 sin2 θ

2
. (17)

Substituting these back into Equation 15 we obtain

y ' 1

2
ln

cos2 θ
2

sin2 θ
2

, (18)

or

y ' − ln tan
θ

2
. (19)

We define the pseudorapidity η as

η = − ln tan
θ

2
, (20)

so that for highly relativistic particles, y ' η. Pseudorapidity is particularly
useful in hadron colliders such as the LHC, where the composite nature of
the colliding protons means that interactions rarely have their centre of mass
frame coincident with the detector rest frame, and where the complexity of the
physics means that η is far quicker and easier to estimate than y. Furthermore,
the high energy nature of the collisions mean that the two quantities may in
fact be almost identical.
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