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1 Review of Lecture 5

Last time we figured out the physical meaning of the square of the total 4–
momentum in two particles about to collide. Where the 4–momentum is writ-
ten pT = (p1 + p2), the dot product of pT with itself, pT · pT is equal to
−M2

T c
2. Here MT is the mass of the heaviest particle that could be produced

in the collision. In the centre of mass (CM) frame, where total momentum is
zero, you produce the heaviest particle you possibly can if it is at rest, there-
fore −E2/c2 is just −M2

T c
2. Were anything moving, the kinetic energy would

be wasted, and could have instead been used to create a heavier particle. Were
there more than one particle in the final state, the rest energy available would
have to be split between them, again meaning that any single particle has less
rest mass than it could have. So a single particle at rest in the centre of mass
frame really does define the heaviest thing you can make. In other frames, it is
not possible for a single particle to be at rest on its own, since in these frames
the total momentum is not zero. So, the calculation of the heaviest possible
particle always uses the centre of mass frame. It’s the simplest thing to do.

We then went on to do an extreme example of a problem that uses this con-
struction, the calculation of the energy an ultra high energy proton, a primary
cosmic ray, would have to possess in order to scatter off a cosmic background
photon at a temperature of 3 kelvin to produce a π+ meson and a neutron.
The answer, 3 × 1020 eV, is the GZK cutoff, above which no primary cosmic
rays have yet been observed. The search goes on, though, as discovery of
so–called trans GZK protons would indicate new physics.
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2 Phase space and resonant production

In this example, trans GZK protons produce not one but two particles, the
neutron and the π+, and at the threshold for this process these two particles
are at rest in the CM frame. In reality, this is a threshold configuration; real
collisions would essentially always require more energy from the proton, and
produce final state particles that are moving. This is because of an argument
having to do with phase space which you may well be about to come across
in solid state physics, when studying the Debye model of specific heat and the
density of states!

Think of the momenta of the two final state particles as vectors starting at the
origin in a 3 dimensional space of possible momenta. If the momenta are big,
there is a big space of possibilities for the direction in which these vectors point.
From quantum mechanics, we are lead to think of momentum states, which
can be thought of as occupying a finite volume h̄3 in this momentum space. If
the momenta of the final state particles are tiny or zero, the argument goes,
the number of possibilities for the position of the end point of the momentum
vector of each particle goes to zero, and the process never occurs. This is the
first smell we have had of real particle physics, the intersection of relativity and
quantum mechanics. The process is kinematically allowed (ie, all conserved
quantities are indeed conserved) to make our neutron and π+ at rest, but
quantum mechanics determines the probability of it actually happening, and in
this case that probability is zero. But, even with a very small final momentum
for the neutron and π+, this quantum mechanical probability quickly rises.

In other collisions, a single heavy intermediate state is produced, which then
decays into two lighter particles, giving up some of its mass energy to the
kinetic energy of the decay products. This is what happened in the case of
Z production in LEP or at SLAC. An electron and a proton at high energy
collide, make a Z boson which is essentially at rest, and this Z boson almost
immediately decays, often into two leptons, say µ+ + µ−. Now the mass of a
muon is 107 MeV/c2, so two muons way far less than a Z boson at 90 GeV/c2.
The extra available energy from the Z decay goes in to the momenta of the
muons, which are therefore very large. So when a particle decays, the result-
ing kinetic energy means that the decay products have large momenta, and
therefore the phase space of final states for these particles is large.

An important point here, though, is that this type of process is only likely
if the energies of the incident electron and positron are tuned so that MT is
equal to the mass of the Z. At other energies, the probability for the process
e+ + e− → µ+ +µ− is very much smaller. So, if you were to do an experiment
where electron and positron beams were collided at a range of centre of mass
energies, you would see no events, or just noise, at all MT except those close

2



to the mass of a particle capable of being produced by an e+ − e− collision.
At these values of MT you would see a greatly enhanced production rate of
µ+ µ− pairs.

So, to hunt for new particles, tune the energies of the incident beams, and
look for bumps, or resonances, in the production rate. This is called resonant
production. It is one of the most important discovery mechanisms for new
particles in high energy physics. The most famous discovery by this route was
probably the J/ψ meson. This is a bound state of a charm c and an anticharm
c̄ quark, discovered by Burt Richter and Sam Ting, and their collaborators, in
1974 [1].

3 Kinematics of two body scattering

We are now going to analyse the kinematics of the scattering of two bodies off
each other. We are not for now going to worry about the quantum mechanics
that determines how likely the process is to occur, we are just going to apply
conservation laws, learning what we can about the process from the final state,
taking the occurrence of that final state as a given. Figure 1 shows a general
two body scattering process. Bodies 1 and 2 collide, producing bodies 3 and
4 in the final state.

First let us make it clear why the total 4–momentum is a conserved quantity.
Writing the 4–vectors out explicitly in terms of their components, the total
four momentum initially is

p1 =

(
E1/c
~p1

)
+

(
E2/c
~p2

)
. (1)

Similarly, we could write out the expression for pf , the total final state 4–
momentum. Let us assume that the total 4–momentum is conserved, so that(

E1/c
~p1

)
+

(
E2/c
~p2

)
=

(
E3/c
~p3

)
+

(
E4/c
~p4

)
. (2)

We can see that the conservation of 4–momentum is just another way of ex-
pressing the fact that energy and momentum are both conserved. And, as for
energy and momentum, for the 4–momentum to be conserved, the energy and
momenta must be measured in the same frame of reference before and after
the interaction

However, we could also square the initial and final 4–momenta in Equation 2,
and we would obtain an equation expressing the conservation of the square of
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p1 p2

p3

Figure 1: A general two body collision, with the 4–momenta of the incoming
particles 1 and 2, and the 4–momenta of outgoing particles 3 and 4, labelled
in bold type. No particular reference frame is assumed. This process can rep-
resent elastic scattering of two particles off each other, in which case particles
1 and 3 may have the same mass, and similarly for particles 2 and 4. Alterna-
tively, it could represent an inelastic scattering process, with particles 1 and
3 converted into different particles 2 and 4. The shaded circle in the middle
signifies that we do not specify at this stage any detailed description of the
interaction occuring here.

total 4–momentum. This equation is

(p1 + p2) · (p1 + p2) = (p3 + p4) · (p3 + p4). (3)

Because the sum of 4–vectors is also a four vector, and the square of any
four vector is Lorentz invariant, the dot product of a 4–vector with itself is
frame–independent. This combined with the conservation of 4–momentum
means that the square of the total 4–momentum is firstly conserved during
the interaction, and secondly independent of the velocity of the observer. So
one can, as we did last lecture, equate the square of the total 4–momentum
before an interaction with all the relevant quantities measured in one reference
frame, with the square of the total 4–momentum after the interaction, with
all the relevant quantities measured in a different reference frame.

However, today we’re going to ask a different question. Are there other 4–
vectors apart from the total 4–momentum which we could use to construct
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interesting invariant quantities? Let’s find one of these quantities by rearrang-
ing Equation 2 as follows:

p1 − p3 = p2 − p4. (4)

The difference between two 4–vectors is still a 4–vector. Therefore we may take
the 4–vector square of each side of this equation and end up with a quantity
that is Lorentz invariant.

(p1 − p3) · (p1 − p3) = (p2 − p4) · (p2 − p4). (5)

Written this way, the equation does not express a conservation law, since on
each side of the equation we have a mixture of quantities from before and
after the collision process. However, we may still wonder what the physical
significance of these quantities are. To find out, choose one side of the equation,
and expand the 4–vector dot product.

(p1 − p3) · (p1 − p3) = p1 · p1 + p3 · p3 − 2p1 · p3

= −M2
1 c

2 −M2
3 c

2 − 2

(
E1/c
~p1

)
·
(
E3/c
~p3

)
,

(6)

where in the second line we have explicitly written out the components of
each 4–vector and used the equality p2 = −E2/c2 + |~p|2 = −M2c2, by the
energy–momentum–mass relation. Now we evaluate the dot product on the
right term–by–term and split it into two components for reasons that will
become clear presently.

(p1 − p3) · (p1 − p3) = −M2
1 c

2 − E1E3

c2
−M2

3 c
2 − E1E3

c2
− 2~p1 · ~p3. (7)

Next we write that
E1 − E3 = ν, (8)

so that in addition E1 = E3 + ν and E3 = E1 − ν. In terms of this quantity
we have

(p1 − p3)2 = −M2
1 c

2 +
E1(E1 − ν)

c2
−M2

3 c
2 +

(E3 + ν)E3

c2
− 2~p1 · ~p3. (9)

Next multiply out and rearrange.

(p1 − p3)2 =
E2

1

c
−M2

1 c
2 +

E2
3

c2
−M2

3 c
2 − 2~p1 · ~p3 −

E1ν

c2
+
E3ν

c2
. (10)

Using the energy–momentum–mass relation the pairs of terms in E/c and M
to the right of the equals sign may be reexpressed as the squares of ~p1 and ~p3.

(p1 − p3)2 = |~p1|2 + |~p3|2 − 2~p1 · ~p3 −
E1ν

c2
+
E3ν

c2
. (11)
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We may again apply Equation 8 and rearrange to obtain

(p1 − p3)2 = − (E1−E3)ν
c2

+ |~p1|2 + |~p3|2 − 2~p1 · ~p3

= −ν2

c2
+ (~p1 − ~p3)

2

.

(12)

Now we can interpret this equation. The quantity E1−E3 is called the energy
transfer. It is the amount by which the energy of particle 1 exceeds that
of particle 3. To interpret this, consider cases in which 1 and 3 represent
the incoming and outgoing tracks of the same particle. In this case, this
particle has lost energy ν, and by conservation of energy, it must have been
transferred to particle 4 in the final state. This is why it’s called the energy
transfer. Similarly, ~p1 − ~p3 is the difference in momentum between particle 1
and particle 3. So this could be called (though we will not use this term) the
momentum transfer. Overall, the right hand side is the square of a four–vector,

q =

(
ν/c
~p1 − p3

)
. (13)

It’s components are interpreted as the energy transferred from particle 1 to
particle 3, and the momentum shift between particle 1 and particle 3. Its
square q2 is the square of a 4–vector, and hence is Lorentz invariant.

4 Elastic scattering in the lab frame

Figure 2 shows the particular case of elastic scattering that we will consider
next, the elastic scattering of a target particle at rest in the lab by some
incident particle. In the final state, the target particle, initially at rest, recoils
with some energy E3. The incident energy of the beam particle is E2.

Let us evaluate the square of the 4–momentum transfer to the stationary
target. The energy transfer ν to the stationary target is

ν = E3 −MT c
2. (14)

The 4–momentum transfer squared is

q2 = −ν
2

c2
+ |~p3 − ~p1|2. (15)

But ~p1 is zero because the target particle is stationary in the lab. Furthermore,
the energy transfer µ is equal to E3 −MT c

2. Substituting in to Equation 15
we obtain

q2 =
−(E3 −MT c

2)2

c2
+ |~p3|2. (16)
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p1 = (MTc,~0)

p4

p2

p3 = (E3/c, ~p3)

Figure 2: Two body elastic scattering with a fixed target of mass MT . We
have chosen to work in the rest frame of the target.

Next we square out the bracket and collect terms in what will turn out to be
a convenient order.

q2 =
−E2

3

c2
+ |~p3|2 +

2E3(MT c
2)

c2
−M2

T c
2. (17)

Using the energy–momentum–mass relation again, we substitute for the first
two terms on the right, arriving at

q2 =
2E3(MT c

2)

c2
− 2M2

T c
4

c2
. (18)

Finally we note again that ν = E3 −MT c
2, so we arrive at

q2 = 2MTν. (19)

This equation applies to elastic scattering, because the particle species are
unchanged by the collision. It relates an Lorentz invariant quantity, q2, to
another Lorentz invariant quantity, MT , the rest mass of the target, and the
new quantity ν, the energy transfer to the target. Therefore the energy transfer
ν must be Lorentz invariant too in elastic scattering processes where this
relationship holds.

Next, consider a closely related scattering process, where an incident beam
particle, perhaps a point–like particle such as an electron, scatters off a more
complex object, perhaps a proton, for example. Some of the time, the target
particle will scatter the proton elastically, and Equation 19 applies. However,
how do we think about processes in which the incoming electron scatters inelas-
tically in the proton? In this case, perhaps we can consider that the electron
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p4

p2

p3 = (E3/c, ~p3)

Figure 3: Deep inelastic scattering of an electron in a proton. Although the
incident particle does not scatter off the whole nucleus elastically, under some
circumstances it can be thought of as scattering effectively elastically off some
object within the proton.

is scattering elastically, not off the whole proton, but off some component of
the proton. Figure 3 illustrates this type of process.

Now, let us define a variable x, defined as

x =
q2

2MTν
(20)

When this quantity is 1, Equation 19 is satisified, with MT equal to the mass
of the proton, so that the electron is scattering off the whole proton. To
check that elastic scattering is all that occurs, we might do the following
experiment: construct a fixed target experiment with a proton bearing target
and an electron beam incident upon it. For each incident electron, measure
its recoil energy and momentum, and hence determine the four momentum
transfer to the target proton and its square q2. Infer also the energy transfer
ν, which is the difference between the electron energy before and after the
collision. Hence deduce x for the collision, using for MT the mass of the target
proton. As a function of this measured x, plot a histogram of the scattering
events.

In the case where protons have elastic scattering only, one might expect the
scattering events all to have x = 1, and hence the histogram would have a
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big peak there, and would have far fewer events at x in the intervening range
[0, 1].

Next lecture we consider the consequences of elastic scattering off constituents
and in particular the production and detection of resonances in the nucleus.
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