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1 Review of Lecture 4

Last time we studied use of 4–vectors, particularly the 4–momentum,
in relativity calculations. We learned that if a particle has total energy
E and momentum ~p, then we may write its 4–momentum as follows:

p =

(
E/c
~p

)
. (1)

The symbol p in bold means the 4–momentum. The vector arrow above
the ~p denotes the ordinary momentum vector, which can be written in
terms of its Cartesian components (px, py, pz), or alternatively in terms
of components in some other coordinate system. So overall p is a four
component object.

We also learned how to generate an invariant quantity from the 4–
momentum. We defined the square of the 4–momentum p · p = p2 as
follows:

p · p = p2 = −
(
E
c

)2
+ ~p · ~p.

= −m2
0c

2,
(2)

where the second line follows as a consequence of the energy–momentum–
mass relation, E2 = p2c2 + m2

0c
4. Notice that the formula is not the

same as the formula for the dot product of two ordinary three dimen-
sional vectors because of the minus sign preceding the square of the
0th component.

Equation 2 means that the square of the four momenta of individual
particles are particularly simple, yielding p2 = −m2

0c
2 for massive par-

ticles, and p2
γ = 0 for photons and other massless particles.
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We also learned to write down the total 4–momentum of a system as
another 4–component object with the zeroth component containing the
total energy (divided by c), and the other three components containing
the three components of the total momentum. This means that in the
centre–of–mass frame, where the total momentum is zero, the total 4–
momentum has only one non–zero component, the zeroth component,
the total energy over c,

p2
CM = −E

2

c2
. (3)

Now let us think a little more about this business of the total four
momentum of a system of particles. If we have several particles, we
are free to add up their energies and get the total energy, Et. We are
also free to add up their momenta, so long as we add them as vectors,
to obtain the total momentum ~pt. The t subscript denotes total. We
may form a 4–vector out of the total energy and total momentum of
the system, just as we did for an individual particle,

pt =

(
Et/c
~pt

)
. (4)

Now, again just as for an individual particle, we may square the four
momentum to obtain pt · pt = −m2

t c
2, where mt is some total invariant

mass for the system. By invariant, I mean that any inertial observer
measuring Et and pt, and from these numbers forming pt, and then
squaring this total 4–momentum will obtain the same result, −m2

t c
2.

What is mt? mt is the maximum mass that this set of particles can
produce when they collide, if this particle is produced at rest. mtc

2

is called the centre of mass energy of the system. Sometimes it is
given the symbol

√
s. It’s an invariant quantity. Furthermore, because

total energy and total momentum are conserved, it’s also a conserved
quantity when calculated before and after some collision or decay.

Note that the above does not mean that any system of particles is
equivalent to a set of particles at rest in the centre of mass frame! Just
because a centre of mass frame exists, this does not mean that in that
frame all the particles are at rest. It may be that you have, for example,
two electrons in the centre of mass frame with equal energy and opposite
momenta. Their total momentum is zero, but it is certainly not true
that all the energy of this configuration is in rest energy. On the other
hand, if these two particles collide, then they might produce a single
particle at rest. In fact, this is terribly unlikely because of the so-
called quantum mechanical phase space argument. If you are trying to
produce a single particle at rest, its momentum must be exactly zero.
The number of quantum mechanical states having momentum exactly
zero is of order 1. If the number of possible final quantum states is
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very small, then the probability of the process occurring is also very
small. So the production of a single particle at rest in a centre of mass
frame collision is very unlikely. But, that’s quantum mechanics; from
the point of view of the relativistic dynamics of the collision there is
nothing that prevents this process.

The power of the invariant mass, and the squared total 4–momentum
that generates it is that you can do dynamics calculations particularly
easily, since the square of the total 4–momentum of a system can be
evaluated in one reference frame before the collision, and if necessary
a more convenient reference frame after the collision. Let’s now study
an example of a calculation that can make use of conservation of the
total squared 4–momentum.

2 Ultra high energy cosmic rays and the

GZK cutoff

Now for another example, and this time a very interesting one, the so–
called GZK cutoff (GZK stands for Greisen–Zatsepin–Kuzmin). This
cutoff has to do with the passage of ultra high energy cosmic rays
through intergalactic space. As you know, space is permeated by mi-
crowave photons which are the radiation fall-out of the big bang. Often
they are called the cosmic microwave background radiation, or CMBR.
Sometimes they are just called the cosmic background radiation, which
is sensible because they have only become microwaves today due to
being redshifted during the expansion of the Universe - when produced
they must have had a very much shorter wavelength.

Now, enter an ultra high energy proton, produced in some faraway
astrophysical accelerator (next to a black hole accreting matter, for
example). It’s barrelling through what to most of us would seem like a
boring vacuum, on its way towards Earth. However, because it’s going
so fast, it’s total energy is enough to create new particles if it can scatter
off something to conserve both energy and momentum. In particular,
our high energy proton could potentially scatter off a photon from the
CBR. The following process might then occur:

p+ γ → n+ π+ (5)

The positively charged pion ensures that charge is conserved. The
question is, what energy does the proton have to posess in the lab frame
(defined by the rest frame of the cosmic background radiation), for this
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process to be possible? This is an important question, because if this
process is possible, cosmic rays having energies above this threshold
would never reach us, since they would be overwhelmingly likely to
scatter off a CBR photon somewhere on their journey and convert into
neutrons and pions, thereby never reaching us and being detected.

To start off with, we wish to know the energy of a typical CBR photon.
The temperature of the CBR today is approximately 3 kelvin. The
energy of a photon having this temperature is

kB T = 1.38× 10−23[J K−1]× 3[K] = 4.2× 10−23J
= 4.2× 10−23J/1.6× 10−19[J eV−1]
= 263µeV
= 2.63× 10−10 MeV.

(6)

This is a tiny energy compared to that of the proton. Now, in the lab
frame, let us write the sum of the 4–momenta of the proton and the
gamma, and square it. We then remember that we want the lowest
energy the proton can have to react with the CBR photon to produce
a neutron and a neutrino. As with the example we did last time, the
lowest proton energy that can yield these two particles will produce
them both at rest in the centre of mass frame.

Now, I realise that the lab frame is very, very far from the centre of
mass frame. That really doesn’t matter. We simply equate the square
of the total 4–momentum in the lab frame before the collision with the
square of the total 4–momentum of the pion and the neutron in their
centre of mass frame after the collision. We can do this because the
square of the total four momentum is Lorentz invariant; any inertial
observer will get the same value for it. So, we obtain

(pp + pγ)
2 = (pn + pπ)2. (7)

Since at the threshold for production of the pion and neutron, they are
both produced at rest, their total energy is (Mn + Mπ)c2. Since we’re
in their centre of mass frame, their total momentum is zero. Hence we
have, after the collision, at the threshold where there is just enough
energy to make a neutron and a pion both at rest in their centre of
mass frame,

(pn + pπ)2 = −(Mn +Mπ)2c2 (8)

Now to deal with the left hand side of the equation. Let’s just take the
dot product term-by-term on the left and see what we come up with.

(pp + pγ)
2 = (pp + pγ) · (pp + pγ)

= p2
p + 2pp · pγ + p2

γ ,
(9)
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where each of the terms on the right hand side is a 4–vector dot product
following the usual rule discussed at the start of this lecture. Next, it
is time to invoke some of the rules for squares of four momenta of
individual particles. For the proton, we have p2

p = −M2
p c

2. For the
photon, we have p2

γ = 0. The left hand side therefore simplifies and
Equation 8 becomes

−M2
p c

2 + 2pp · pγ = −(Mn +Mπ)2c2. (10)

Next we evaluate pp · pγ. To maximise the energy available from the
collision, we make the momenta of the two particles in opposite direc-
tions. The 4–momentum of the proton is

pp =

(
Ep/c
Ep/c

)
. (11)

Here we have assumed that we are in the highly relativistic regime, so
that for the proton Ep = ppc, so that Ep/c = pp.

Similarly for the photon, we write

pγ =

(
Eγ/c
−Eγ/c

)
. (12)

Therefore the dot product of the proton and photon 4–momenta is

pp · pγ = −EpEγ
c2

+
(
Ep
c

) (
−Eγ
c

)
= −2EpEγ

c2
.

(13)

Substituting the dot product back into Equation 10 becomes

M2
p c

2 +
4EpEγ
c2

= (Mn +Mπ)2c2. (14)

Rearranging and expressing in terms of rest energies by multipying
throughout by c2, we obtain

4EpEγ = (Mnc
2 +Mπc

2)2 − (Mpc
2)2 (15)

or

Ep =
(Mnc

2 +Mπc
2)2 − (Mpc

2)2

4Eγ
. (16)

Now to insert some numbers. The mass of a neutron is Mn = 939.6 MeV/c2,
and that of a proton is Mp = 938.3 MeV/c2. The mass of a π+ meson
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is Mπ = 139.6 MeV/c2. Using the energy of a CBR photon calculated
in Equation 6 we obtain

EP = (939.6+139.6)2−938.32 [MeV2]
4×2.6×10−10 [MeV]

= 3× 1020eV.
(17)

As a consequence of this limit, we do not expect to detect cosmic rays
from deep space having energies greater than roughly 1020 eV, because
any such cosmic ray particles would scatter off the CBR photons and
be lost.

Figure 1 is an energy spectrum of ultra high energy cosmic rays from
various instruments. On the horizontal axis is the cosmic ray energy,
and on the vertical axis is the measured flux. It is clear that the flux is
dropping off to zero at roughly 1020 eV as predicted by our scattering
calculation.

Figure 1: An energy spectrum of ultra high energy cosmic rays, taken
from http://imagine.gsfc.nasa.gov/docs/features/topics/snr_

group/images/cr-knee.gif The GZK cutoff is visible at the right
hand edge of the figure, where the cosmic ray energy spectrum appears
to cut off right where absorption of protons by the CBR is predicted to
turn on.

This treatment of the GZK cutoff is approximate. In particular, we
have not taken into account the statistical spread in cosmic background
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photon energies; it turns out that to get the right answer, one has to
assume that there is an appreciable number of more energetic photons
on the tail of the Maxwell Bolzmann distribution, and it is these pho-
tons which will define the GZK cutoff. Also, the process that we have
discussed, p + γ → π+ + n is not the only microwave background scat-
tering process for high energy protons. In particular, a second process,
p + γ → p + π0 also takes place, and indeed is energetically preferred
because the final state particles are lighter. Though it seems that you
get the proton back, energy will have been transferred to the π0, and
therefore the energy of the proton is greatly reduced, to far below the
GZK cutoff. Taking into account these and other details, the energy at
which you begin to see suppression of GZK photons is in fact around
3× 1019 eV.

Next time, we’ll do some elastic scattering calculations, and perhaps
introduce the useful 4–vector known as the 4–momentum transfer.
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