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1 Review of Lecture 2

Last time we recalled that in special relativity, as in pre-relativistic
dynamics, the total energy in an interaction or collision is con-
served, as is the vector total momentum, as long as the mea-
surements of these quantities are carried out by the same non–
accelerating observer before and after the collision. We also
recalled from the previous course in year 1 some formulae for
the energy and momentum of a moving particle. The total
energy E can be written E = γm0c

2, where m0 is the rest
mass. The magnitude of the momentum can be determined
from pc = βγm0c

2 = βγER, where ER = m0c
2 is the energy

of a particle at rest. Recall that pc has energy units, so that if
pc = 75 MeV, then the momentum is p = 75 MeV/c.

2 The Energy–Momentum–Mass re-

lation

The above formulae lead us back to the energy–momentum–
mass relation that we saw last year. If we sum the squares of
the momentum and pc then we obtain
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so that
E2 = (pc)2 + (m0c

2)2 (2)

This equation is very useful in doing problems where we are
using conservation of energy and momentum. A special case of
this result is that where the particle has either zero rest mass,
or its rest energy is negligible compared to its total energy. In
these cases only we may write

E = cp (3)

This equation is exact for photons and approximate for particles
whose total energy is much greater than their rest energy.

Again, these are equations where use of quantities with en-
ergy units comes in very handy. Suppose we have a particle
whose rest mass is 938 MeV/c2 (a proton), and it has a to-
tal energy of 6 GeV. Then its momentum is given by pc =√

62[GeV2] − 0.942[GeV2] = 5.92GeV. Therefore its momen-
tum is 5.92 GeV/c. Notice that nowhere did I divide or multiply
by 3×108. The factors of c are left as just that - symbolic factors
of c that make the dimensions work out. The numbers are all
electron volts, the factors of c just tell us where we would need
to divide or multiply by c to convert back to a momentum or
a mass. We should never need to do this conversion if we stick
with quantities in electron volts.

3 Compton Scattering

Compton scattering is a very important process in physics. It
is the scattering of a photon off a charged particle. Consider-
ing the charged particle to be initially at rest to some observer,
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in the final state the particle moves off with some kinetic en-
ergy. Therefore the energy of the scattered photon must have
dropped. Consequently, Compton scattering is one of the pri-
mary mechanisms for the loss of energy of gamma ray photons
when they pass through matter.

Figure 1 is a diagram of Compton scattering.
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Figure 1: Compton scattering. An incident photon having en-
ergy Ei

γ strikes a stationary particle of rest mass m0. The par-
ticle recoils with total energy Er and momentum of magnitude
pr, and the photon moves off with energy Ef

γ . As a consequence,
energy is transferred from the incident photon to the recoiling
particle, and the direction of the photon is altered.

Let us use conservation of energy and momentum to analyze
Compton scattering. First, momentum. The interaction occurs
entirely within the plane formed by the incident direction of the
photon and the scattering directions of the recoiling particle and
photon, otherwise it would be impossible to conserve momen-
tum. So there are two other momentum components that are
conserved, that parallel to the direction of incidence of the pho-
ton and that perpendicular to it. Conservation of momentum
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parallel to the incident photon first:

piγ = pr cosφ+ pfγ cos θ, (4)

where piγ is the momentum of the incident photon. Multiplying
by c we obtain

piγc = prc cosφ+ pfγc cos θ. (5)

Using Equation 3 to substitute for piγc and pfγc (we cannot do
this for the particle because it has a mass), we obtain

Ei
γ = prc cosφ+ Ef

γ cos θ. (6)

Now what we are heading for here is an equation for the energy
shift of the photon in terms of its scattering angle θ. We would
therefore like to eliminate φ, so let us isolate the term that has
a φ in it. Moving the rightmost term to the left of the = sign,
we obtain

Ei
γ − Ef

γ cos θ = prc cosφ. (7)

So much for the first momentum component. Notice, though,
that the momentum component in the direction perpendicular
to the direction of the incident photon is also conserved. In this
direction, there is zero momentum component before the colli-
sion, because neither particle has any component of its velocity
in that direction. Therefore the sum of the momentum compo-
nents in the vertical direction on the figure after the collision
must also be zero. So we write

pfγc sin θ = prc sinφ. (8)

We have included a c in anticipation of the next step, which is
to replace photon momentum with energy,

Ef
γ sin θ = prc sinφ. (9)

Now we can eliminate φ between Equations 7 and 9 by squaring
both equations. Squaring Equation 7 we obtain

(Ei
γ − Ef

γ cos θ)2 = p2
rc

2 cos2 φ. (10)

Squaring Equation 9 we get

(Ef
γ )2 sin2 θ = p2

rc
2 sin2 φ. (11)

Adding these two equations together we can eliminate the un-
wanted angle φ.

(Ei
γ − Ef

γ cos θ)2 + (Ef
γ )2 sin2 θ = p2

rc
2
(
cos2 φ+ sin2 φ

)
= p2

rc
2.

(12)
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Continuing to simplify this equation, we multiply out the brack-
ets on the left hand side.

(Ei
γ)

2 − 2Ei
γE

f
γ cos θ + (Ef

γ )2 cos2 θ + (Ef
γ )2 sin2 θ = p2

rc
2, (13)

and therefore

(Ei
γ)

2 − 2Ei
γE

f
γ cos θ + (Ef

γ )2 = p2
rc

2. (14)

Getting to this stage has used up the laws of conservation of
momentum components. Next we apply conservation of energy.

Ei
γ +m0c

2 = Ef
γ + Er. (15)

Here we are moving towards eliminating the energy Er and mo-
mentum pr of the recoiling particle. So we isolate Er by moving
Ef
γ to the other side of the equals sign.

Ei
γ +m0c

2 − Ef
γ = Er. (16)

Next we square this equation, because we notice that E2
r could

be added to the p2
rc

2 on the right hand side of Equation 14 to
eliminate both of them. Squaring the left hand side will give us
six terms, but that’s life. Let’s hope a lot of them cancel later.

(Ei
γ +m0c

2 − Ef
γ )2 = E2

r , (17)

or

(Ei
γ)

2 +m2c4 +(Ef
γ )2 +2Ei

γmc
2−2Ei

γE
f
γ −2Ef

γmc
2 = E2

r . (18)

Now we subtract Equation 14 from Equation 18. The right hand
sides subtract to give E2

R − p2
rc

2 = m2
0c

4. This means we have
eliminated Er and pr leaving the following,

m2
0c

4 + 2Ei
γmc

2 − 2Ei
γE

f
γ (1 − cos θ) − 2Ef

γmc
2 = m2c4. (19)

After cancelling the m2
0c

4 terms on the left and the right, can-
celling the factors of 2 and rearranging, we are left with

(Ei
γ − Ef

γ )

Ei
γE

f
γ

=
1 − cos θ

m0c2
. (20)

This is a lot prettier than some of the long winded equations
from earlier, but it’s still not as compact as it can be in wave-
length terms. The wavelength λ of a photon of energy E is
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λ = hc/E. Denoting the final and initial photon wavelengths by
λf and λi, we write down the wavelength difference,

λf − λi = hc

Efγ
− hc

Eiγ

=
hc(Eiγ−Efγ)

EiγE
f
γ

(21)

Substituting in Equation 20 leads us to a simple form of the
Compton scattering formula relating the wavelength shift in the
photon to the scattering angle θ

λf − λi =
hc(1 − cos θ)

m0c2
. (22)

4 Compton scattering in detectors

The Compton scattering result is one of the most important
results that can be easily derived using ordinary conservation of
energy and momentum in relativity. The physics consequences
of this result are far reaching because of the nature of many
detectors in particle physics. Very common types of detectors
for radiation in the form of γ–rays make use of materials that
rely on the absorption of gamma rays in some solid detector
element, perhaps a crystal of germanium, or sodium iodide.

What you want to happen is that all the energy of the γ–ray
is absorbed in the material, which then re-emits that energy in
some detectable form, perhaps a flash of light or some ionisation
electrons, both of which can be detected in suitable instruments
(a photomultiplier tube for the flash of light, some electrodes
and charge amplifier electronics for the ionisation electrons). In
which case, all the energy of the incoming particle is detected,
and if the incoming γ–rays were mono-energetic, you see a nice
narrow spike in the energy spectrum of the detected light or
ionisation charge.

In reality, various affects can spoil the party. One such affect is
compton scattering. Your gamma ray scatters off some electron
either in the source or in the detector, imparting a portion of its
energy to the electron. This electron then itself deposits energy
in the detector, so some of the scintillation or ionisation pulses
detected by your instrumentation will have an energy charac-
teristic of the scattered electron, not that of the incident γ–ray.
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Notice, however, that there is a gap between the maximum en-
ergy of these scattered electrons and the incident energy of the
γ–ray that produces them.

Start with Equation 20, and note that the maximum energy
transfer to the electron will be when θ = 180◦, so that 1−cos θ =
2. Also write Ei

γ − Ef
γ = ∆. Then the equation becomes

∆

Ei
γ(E

i
γ − ∆)

=
2

m0c2
. (23)

Solving for ∆ we obtain

∆ =
(Ei

γ)
2

Ei
γ + mc2

2

. (24)

This gap means even the most energetic Compton scattered elec-
trons cannot match the energy of the incident γ–ray. There
will always be an energy gap between signals corresponding to
complete absorption of the incident γ–ray by the detector and
signals corresponding to the most energetic compton scattered
electrons. The typical spectrum of detector signals consists of a
sharp full absorption peak at high energy with a broader distri-
bution having an abrupt shoulder falling off at energies slightly
below this peak. This shoulder is called the Compton edge, and
is seen in a large variety of spectra from radiation detectors in
many fields of physics. An example of a gamma-ray spectrum
from a sintered AmBe source (a rich source of gamma rays and
neutrons) is shown in Figure 2. There are two full absorption
peaks visible, one very narrow one at channel 2200 or there-
abouts, and the other slightly wider one at 4360. Notice that
below each of these peaks is a Compton edge, corresponding the
maximum energy compton scattered electrons from gamma rays
in these two narrow peaks.

The other features labelled escape peaks are due to gamma
rays inducing electron-positron pair production in the detector,
where either one of the pair (single-escape peak) or both of them
(double-escape peak) leaves the detector without depositing its
energy.
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Figure 2: The energy spectrum of gamma rays from an AmBe
source, as measured by a gamma ray spectrometer. Taken
from http://upload.wikimedia.org/wikipedia/commons/f/

f2/Am-Be-SourceSpectrum.jpg
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