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1 Review of relativistic doppler shift

Last time we figured out the relativistic generalisation of the
classical doppler shift of light emitted by a moving source. For
a source that is moving away from the observer at a velocity
v = βc parallel to the straight line joining source and observer,
the wavelength λob observed by the observer with respect to
whom the source is receding is related to the wavelength λem in
the rest frame of the source by

λob = λem

√
1 + β

1− β
. (1)

This leads directly to the Doppler shift z of the light, which is
greater than zero for the source receding from the observer and
less than zero for the source approaching the observer.

z =
λob − λem

λem

=

√
1 + β

1− β
− 1. (2)
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2 Energy associated with a mass at

rest

In this section we will derive the most famous result of Einstein’s
special theory. The derivation is reproduced from French’s book,
and like the light clock derivation of time dilation it is not rig-
orous, but does give a nice intuitive feel for the origin of the
result. Before we set up the proof, we need to recall a result
which comes from classical electromagnetism, the relationship
between the energy and momentum of light. If a light beam
carries momentum of magnitude p and energy E, then these are
related by

E = cp. (3)

You may wonder how this very relativistic looking result arises
from classical electromagnetism! In fact, it turns out that the
equations of classical electromagnetism are consistent with spe-
cial relativity, even though they pre-date it by some forty years.
In fact, Einstein and others came up with the Lorentz trans-
formations by considering electromagnetism; Einstein’s famous
paper in which special relativity is discussed is called ‘The Elec-
trodynamics of Moving Bodies’. We will need this result in the
derivation to come.

We consider a closed box free to move along the x–axis. The box
is of mass M and initially at rest. This box contains a hollow
cavity of length L. At some time the box emits a photon from
the left hand end of the internal cavity, which travels down the
cavity and is re-absorbed at the right hand end. Figure 1 is a
schematic of this apparatus.

Consider the photon to have energy Eγ. Therefore, its momen-
tum is pγ = Eγ/c. To conserve momentum, the momentum of
the box during the photon’s flight must be −Eγ/c. Since the box
is moving with v � c, we can find its velocity by writing Mv =
Eγ/c. Therefore the velocity of the box is v = Eγ/(Mc). Now,
if the box is moving very slowly, the time of flight of the photon
from one end to the other is to very high precision ∆t = L/c.
In this time the box moves a distance ∆x = v∆t = EγL/(Mc2).

Now, consider how this squares up with classical physics. If you
are outside the box, you don’t see the goings on in the hole
with the photon. As far as you are concerned, the box abruptly
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Figure 1: A photon emitted internally from one end of a cavity
of length L in a box of mass M , subsequently re-absorbed at the
opposite end of the box. This thought experiment was invented
by Einstein to provide physical intuition for the famous result
for the rest energy of a body at rest, ER = m0c

2.
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starts moving at some time, then stops again a short time later.
However, without an external force acting, it is not possible
for the box’s centre of mass to move. The only way to make
everything consistent is to have the photon move some of the
mass of the box from the left hand end to the right hand end
when it travels. Since the box of mass M moves a distance ∆x
to the left, to ensure that the centre of mass does not move, a
small component m of this mass must move with the photon
a distance L to the right. For the centre of mass not to move
overall we must have

mL = M∆x

= MEγL

Mc2
,

(4)

and therefore
Eγ = mc2. (5)

Note that in deriving this result we have made a couple of ap-
proximations regarding the velocity of the box and the propor-
tion of the mass of the box that converts to the photon. Rest
assured that the result is exact even if we tighten up these as-
sumptions. The algebra, however is harder.

This result relates the energy of a photon to some mass that was
annihilated to produce it. Notice that the mass was initially at
rest, before being converted into energy. From now on we will
use a 0 subscript to denote a mass at rest. The result gives the
equivalence between mass at rest and energy. Although in this
case we have used the mass to make a photon, the energy from
this mass could have also been used to create other particles, or
to heat up the surroundings, for example. So we will in addition
drop the γ subscript, replace it with an R subscript to remind
us that this is the energy of the body at rest and simply write

ER = m0c
2 (6)

3 Energy of a moving mass

When a massive body is moving, it will have more total energy
than it does when it is at rest. We will need to know how to
compute the total energy of a body from its rest mass m0 and
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its velocity. We can make a guess at the answer based on non-
relativistic physics. For slow moving bodies let us guess that
the total energy is the sum of the rest energy m0c

2 and the
non-relativistic kinetic energy m0v

2/2. The total energy is then

E ' m0c
2 + 1

2
m0v

2

' m0c
2
(

1 + 1
2
v2

c2

)
(7)

Now let us assume that this is an approximation derived from
an exact result. We also guess that the correct result should
give an energy that approaches infinity as the particle’s velocity
approaches c. Notice that these two terms are in fact the first
two terms in the binomial expansion for small v/c of

E = m0c
2

(
1− v2

c2

)− 1
2

= γm0c
2. (8)

This has the desired properties, but of course we have only made
a guess. The next step is to show that this guess leads to con-
served quantites that correspond to those we are familiar with
from pre-relativistic physics and that transformations of those
quantities are consistent with those that we already found for
the position and time coordinates of an event.

4 Relativistic analysis of the emission

of a photon by a mass

We consider a particle of initial rest mass M0 that emits a pho-
ton. Consider this first in the coordinate system at rest with
respect to the particle, and consider the particle positioned on
the positive x–axis of this coordinate system as shown in Figure
2, with the observer positioned at the origin.

On decay, the photon moves towards the observer. The energy
of the particle before the decay is just its rest energy Ei = M0c

2.
It emits a photon of energy Eγ = m0c

2, where m0 is the loss in
rest mass of the particle which allows the emission of the photon.
The momentum of the photon after emission is
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Figure 2: The emission of a photon by a massive body towards
the origin. By using the known doppler shift of the photon wave-
length when we transform to the coordinate system of a moving
observer, we can work out the relativistic generalizations of the
low-velocity approximations for the energy and momentum of a
body in motion.

pγ = −Eγ/c = −m0c. (9)

By conservation of energy, the energy of the particle after the
decay is

Ef = (M0 −m0)c
2. (10)

By conservation of momentum, the momentum of the particle
after decay is

pf = +m0c. (11)

Next consider the decay in the reference frame of a primed ob-
server moving in the positive x–direction with velocity v = βc.
To this observer, the particle before the decay is moving towards
the primed origin with velocity v = βc. If our guess for the for-
mula for total energy is right, its initial energy in this frame E ′i
is given by

E ′i = γM0c
2. (12)

Next, consider the photon. Because in the primed frame the
undecayed particle is moving towards the primed observer with
a velocity −βc, the emitted photon will be blue-shifted. Using
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Equation 1 with the sign of β negative, we have

λob = λem

√
1− β
1 + β

, (13)

and therefore since for a photon E = hν = hc/λ, we have

hc

E ′γ
=
hc

Eγ

√
1− β
1 + β

, (14)

and hence

E ′γ = Eγ

√
1 + β

1− β
= m0c

2

√
1 + β

1− β
. (15)

The photon momentum in the primed coordinate system is again
given by p′γ = E ′γ/c, or

p′γ = −m0c

√
1 + β

1− β
. (16)

By conservation of energy the final state energy of the particle
after decay in the primed frame is the difference between the
initial energy in this frame, E ′i and the final photon energy E ′γ,
or

E ′f = γM0c
2 −m0c

2

√
1 + β

1− β
. (17)

Remember that all we have used to derive this result is a guessed
formula for the total energy of a moving particle, the previously
derived formula for the doppler shift of light from a moving
source, and ordinary energy and momentum conservation. But
is this formula consistent with the special relativity we have
learned so far?

5 Lorentz transformations for energy

and momentum

To answer this question, let us recall the Lorentz transformations
for the ct, x, y and z.

ct′ = γ (ct− βx) ,
x′ = γ (x− βct) ,
y′ = y,
z′ = z.

(18)
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Let us now guess that the transformations of energy and mo-
mentum can be performed with the Lorentz transformations in
a similar way. The time coordinate is replaced with energy, and
the three components of the position (x, y, z) are replaced with
the three components of the momentum. A factor of c is inserted
so that the four quantities to be transformed have the same
units, so that the four quantities corresponding to (ct, x, y, z)
are (E/c, px, py, pz). The guessed transformation properties of
these four components are

E′

c
= γ

(
E
c
− βpx

)
,

px′ = γ
(
px − βE

c

)
,

py ′ = py,
pz ′ = pz.

(19)

Do these transformations for energy and momentum work? Let
us first consider the topmost transform to calculate E ′ from
E, px and c, and let us consider the final state energy of the
particle in the two coordinate systems. Starting in the unprimed
coordinate frame where the particle is initially at rest, the final
state particle energy is given by Equation 10. The final state
particle momentum is given by Equation 11. Substituting in for
E and px in the uppermost of Equations 19, we obtain

E′
f

c
=

γEf
c
− βγpx

= (M0−m0)c√
1−β2

− βm0c√
1−β2

= γM0c− (1+β)m0c√
1−β2

= γM0c− (1+β)m0c√
(1+β)(1−β)

E ′f = γM0c
2 −m0c

2
√

1+β
1−β .

(20)

The last line reproduces the result of Equation 17, confirming
that the total particle energy we guessed at in Equation 8 trans-
forms, up to factors of c, the same way as the time coordinate
of an event.

What about the momentum? Again, the momentum of a par-
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ticle should tend to the classical value of mv in the case of low
velocities, but should tend to infinity as v → c. A good candi-
date for the momentum is therefore

p = γm0v. (21)

Again, we can check this guess against our example. In the
primed frame, the initial state momentum of the particle before
the photon is emitted is p′i = −γM0v = −βγM0c. To conserve
energy and momentum, this must equal the sum of the photon
plus the particle momentum after the emission of the photon.
Therefore using Equation 16 for the final photon momentum in
the primed frame and requiring momentum conservation in the
primed frame, we obtain

− βγM0c = −m0c

√
1 + β

1− β
+ p′f . (22)

and hence

p′f = −βγM0c+m0c

√
1 + β

1− β
. (23)

Now let’s see if this same result can be obtained from our guessed
transformation for momentum, the second of Equations 19. This
equation applied to the energy and momentum of the particle
after emission of the photon gives

p′f = −βγEf/c+ γpf . (24)

Using Equations 10 and 11 for Ef and pf , respectively, we obtain

p′f = −βγ(M0 −m0)c+ γm0c.

= −βγM0c+ m0c(1+β)√
(1+β)(1−β)

= −βγM0c+moc
√

1+β
1−β .

(25)

This reproduces Equation 23. Therefore our expressions for the
energy and momentum of a relativistic particle in terms of its
rest mass and velocity transform just like the time and posi-
tion components of a position between the values observed for
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different inertial observers. These energies and momenta are
conserved in just the same manner as energies and momenta are
conserved non-relativistically.

6 Summary

Today we have figured out relativistic expressions for the energy
and momentum of a particle of rest mass m0 moving at velocity
v. They are

E = γm0c
2 (26)

and
p = γm0|v|. (27)

The transformations that give the values of energy and momen-
tum observed by a different inertial observer are consistent with
our previous knowledge of the doppler effect on the observed
wavelength of light emitted by a moving source. It also turns
out that the four quantities (E/c, px, py, pz) have the same coor-
dinate transformations under change in observer velocity as the
four quantities (ct, x, y, z). More about this later in the course.
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