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1 Introduction

Today we will study the doppler effect, and in particular the
redshift of light emitted by a source receding from an observer.
The non-relativistic doppler shift may be familiar to you from
your A–level studies, and indeed you may also have discussed
Hubble’s law, which concerns the redshift of light from galaxies
receding from us due to the expansion of the Universe.

2 The non-relativistic doppler effect

We consider the case where a vehicle is receding from an inertial
observer at a constant radial velocity v = βc with v � c. Figure
1 shows a spacetime diagram for the recession of the moving
source.

Let us consider the emission of two successive wavefronts in the
wavetrain of the light from the moving source. The first of these
wavefronts is emitted at the origin on the spacetime diagram.
Since non relativistically all non-accelerating clocks run at the
same rate, we may assume that the clock on the moving source
determining when the next wavefront is emitted runs at the same
rate as a stationary clock in the coordinate system, so the time
of emission of the subsequent wavefront on either clock is τem.
Therefore the ct coordinate of the emission of this wavefront is
cτem. But
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Figure 1: A source of constant velocity receding radially from
an observer along the x axis at velocity v = βc. The events of
the emission of two successive wave crests are marked with dots.
The second of these wave crests is not coincident with the origin,
so light from this wave crest travels back towards an observer
at the origin along a world line at 45◦ to the horizontal. This
spacetime diagram is drawn in the frame of reference stationary
with respect to an observer at the origin at rest with respect to
the detector measuring the frequency of the radiation from the
receding source.

cτem =
c

fem

= λem, (1)

where fem is the frequency of the source in its rest frame and λem

is the wavelength of the source in its rest frame. The equation
of the world line of the receding source is x = vt, or ct = x/β,
where as last lecture β = v/c. Therefore we can rearrange and
write x = βct. So if ct = λem, then x = βλem. Next, notice
that the triangle formed by the horizontal line at ct = λem, the
ct axis, and the world line of the returning light ray is right
angled and isosceles, and therefore the ct coordinate of its point
of intersection with the ct axis is λem + βλem. But if the time
of emission of this wavefront times c was λem, then the time of
observation is λob, so that
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λob = λem + βλem. (2)

The redshift z is defined

z =
λob − λem

λem

. (3)

Substituting Equation 2 into Equation 3 we obtain

z = β =
v

c
. (4)

Note that the definition is such that if v is positive, the source
is moving away from the observer, and the wavelength of the
light gets longer. This means is that if the light starts out in
the visible part of the electromagnetic spectrum, the Doppler
effect moves its colour towards the red end. If v is negative,
the source is moving twoards the observer and the light is blue
shifted, reduced in wavelength, and increased in frequency.

This result is approximately correct for sources whose recession
velocity v is much less than the speed of light. As usual, the
rough rule of thumb is that if the v < c/3, the non relativistic
result is sufficiently accurate for most purposes.

3 The longitudinal relativistic doppler

effect

Once the source becomes relativistic, a more sophisticated anal-
ysis involving the Lorentz transformations must be used. This
time, we start by considering the problem in the rest frame of the
moving source. In this frame, the world line of the source follows
the ct′ axis, because it is not moving. As usual, we consider the
origins of this primed coordinate system and the unprimed co-
ordinate system of the observer from whom the clock is receding
to be coincident at time t = t′ = 0. Figure 2 shows the world
line of the clock and the events of the emission of successive
wave fronts in the primed rest frame of the moving source.
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Figure 2: The emission of two successive wave fronts as events
in the rest frame (primed) of the source.

As before, the first considered wave front is emitted at ct′ =
0. In the rest frame of the source, the ct′–coordinate of the
next wavefront is ct′ = cτem = λem. The x′–coordinate of both
wavefronts is zero, since in this frame the source is at rest. Now
let us recall our Lorentz transformations.

t′ = γ
(
t− vx

c2

)
,

x′ = γ (x− vt) ,
y′ = y,
z′ = z.

(5)

Taking the first of these transformations, and inverting to ex-
press t in terms of t′ and x′, we get

t = γ

(
t′ +

vx′

c2

)
. (6)

For the second wavefront, noting that x′ = 0, we get

ct = γct′ = γλem. (7)

This gives us the ct coordinate of the event of emission of the
second wavefront in the unprimed coordinate system of the ob-
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Figure 3: The world lines of the moving source and the return-
ing light from the second of two successive wavefronts in the
rest frame of the detector with respect to which the source is
receding.

server with respect to whom the source is receding. Let us now
draw a spacetime diagram in the reference frame of the light
detector.

This diagram is exactly the same as Figure 1, except that the
spacetime coordinates of all the events are scaled by a factor
of γ. The reason for this scaling is that the moving source is
effectively a clock and it is running slow due to the effect of time
dilation. To the detector, however, the first wavefront arrives at
ct = 0, and the second wavefront arrives at ct = λob, therefore
we deduce that

λob = γλem + βγλem

= λem
1+β√
1−β2

= λem

√
(1+β)2

(1+β)(1−β)

= λem

√
1+β
1−β .

(8)

Therefore the special relativistic redshift is given by

1 + z =
λob

λem

=

√
1 + β

1− β
. (9)
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When β approaches 1, z tends to infinity.

4 The non-relativistic limit of the lon-

gitudinal relativistic doppler effect

Let us check that for small β, Equation 9 reduces to Equation
4. Where β � 1, we may write

1 + z =
√

1+β
1−β = (1 + β)

1
2 (1− β)−

1
2

' (1 + β
2
)(1 + β

2
)

' 1 + β,

(10)

so that z ' β, the non-relativistic result.

5 The transverse relativistic doppler

effect

Now let us consider the case where the source is moving at right
angles to the line of sight to the observer. For example, the
source might be positioned some way off on the x–axis, but have
its motion parallel to the y–axis. Non-relativistically, we expect
no doppler shift in the wavelength of the emitted light. However,
since γ depends only on v2, and is therefore independent of the
direction of the motion of the clock, there is a transverse doppler
shift even in this case, caused by time dilation of the source, If
the period of the emitted wave is τem in its own rest frame, then
in the rest frame of the detector, the period will be γτem. Since
the wavelength is c times the period, the observed wavelength
is related to the emission wavelength by

λob = γλem. (11)

Note that when v � c, γ ' 1, and there is zero transverse
doppler shift.

6



6 The expanding Universe

In this section we attempt to head off a misconception that is
particularly common amongst astronomy students that Equa-
tion 9 can be used to deduce the velocity of recession of faraway
galaxies and clusters from the redshift of their spectral lines.
Hubble and others studied the redshift of spectral lines from
distant galaxies and in 1929 formulated Hubble’s law, which
states that the redshift of spectral lines from a source expanding
with the universe is proportional to the distance to that source.
However, the mechanism for the redshift is not the same as the
mechanism which we have discussed above, though for objects
at smaller distances the two descriptions do become equivalent.
The cosmological redshifts of very faraway objects are best un-
derstood in terms of the expansion of the whole Universe, and
the physics of this expansion is not as simple as doppler shift at
the point of emission due to recession of the source.

To make this clear, let us discuss an example. Say at the mo-
ment of emission of the photons, their wavelength is 500 nm.
Now suppose that in the intervening period between the pho-
tons being emitted from their source and arriving at Earth, the
universe expanded by a factor of two (so that the light travel
time between any given pair of galaxies doubled). Then the
redshift of the photons would be exactly one, and their wave-
length at arrival would be 1000 nm. However, it does not matter
what the history of the scale factor of the Universe is between
emission and reception. The scale factor could be increasing
linearly, in which case the velocity of recession of the galaxies
from each other would be a constant, and there is a nice anal-
ogy between Hubble expansion and simple recession. However,
the scale factor could, for example, instead remain constant for
the whole period, except for one discontinuous jump. The effect
on the wavelength of the photons would be exactly the same,
even though at the time of emission and absorption of the pho-
tons, the relative velocity of the source and emitter is zero. In
this case, there is no simple way to understand the cosmological
redshift in terms of the velocity of recession of the source.

If you are interested in cosmological redshifts, they are discussed
both in PHY314 (relativity and cosmology) and PHY306 (in-
troduction to cosmology), which you can take next year. The
subject is also discussed very eloquently in ‘Introduction to Cos-
mology’ by Barbara Ryden, a very readable and well-written
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textbook which can be found in our library.

7 An example

GPS satellites orbit at a speed of 3.9 kilometers per second.
How long does it take their onboard clocks to lose one second
compared to a clock fixed on the Earth? Assume the effects of
acceleration can be neglected, as can the velocity of the Earth’s
surface.

ANSWER: Assume the satellites motion is transverse to the
Earth’s surface. At a velocity of 3.9 km/s, β = 1.3 × 10−5, so
that γ − 1 ' β2/2. For this discrepancy to cause a second of
mismatch in N seconds, Nβ2/2 = 1, so that N = 2/β2, or
N = 1.2 × 1010 s, or 375 years. In fact there are several other
effects that cause differences between timekeeping of GPS clocks
in orbiting satellites and terrestrial clocks, notably a general
relativistic correction which is studied in PHY314.
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