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1 The inadequacy of the Galilean trans-

formations

In Lecture 1 we learned that two inertial (non-accelerating) ob-
servers, one of which is moving at constant velocity v in the
direction of increasing x, measuring the time and position of the
same event obtain answers that, in pre-relativity physics were
thought to be related by the Galilean transformations,

t′ = t
x′ = x− vt
y′ = y
z′ = z,

(1)

where the coordinates of the event to the unprimed observer are
(t, x, y, z), and the coordinates of the same event to the primed
observer are (t′, x′, y′, z′), and the primed observer has a velocity
of +v with respect to the unprimed observer aligned parallel to
the x–axis.

In lecture 2, however, we learned that clocks moving with re-
spect to an observer run slow by a factor of γ = 1/

√
1− v2/c2

with respect to clocks stationary with respect to an observer.
This means that the Galilean transformations must only be ap-
proximate, and must be special cases of more general transfor-
mations. It is easy to show this. Suppose you have a clock,
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which is moving at velocity v along the +ve x–axis with respect
to the unprimed observer, but is stationary with respect to a
primed observer moving with the clock. Let events 1 and 2 be
two successive ticks of the clock. In the unprimed frame, the
times of these two events are t1 and t2, and in the primed frame
they are t′1 and t′2 respectively. The time between clock ticks in
the unprimed frame is ∆t = t2 − t1, and in the primed frame is
∆t′ = t′2−t′1. But since t′ = t, we get ∆t′ = ∆t, and the Galilean
transformations predict that a moving clock runs at the same
speed as a stationary one, in contradiction with Einstein’s the-
ory.

2 Deducing the Lorentz transforma-

tion for x

Now let us use our knowledge of the time dilation formula to
guess a form for the transformation between x and x′, and then
having guessed this form, shore up our guess by thinking more
about the consequences of time dilation. Time dilation scales
time intervals by a factor of γ, so perhaps it scales spatial in-
tervals as well. Let us start with the Galilean transformation
x′ = x − vt, and guess the form of a more general transforma-
tion that allows time and spatial coordinates to be scaled by
some initially unknown factors B and A, respectively. Where B
and A equal 1, we get back to the Galilean transformations.

x′ = Ax−Bvt (2)

Suppose that two observers agree to locate the origins of their
coordinate systems at the origin at time t = t′ = 0, and that
the primed observer and her coordinate system are moving at
velocity +v with respect to the unprimed coordinate system.
Perhaps the primed observer is moving with the muons that
are decaying in our atmospheric experiment. At all subsequent
times, the muons remain at the origin in the primed coordinate
system. For this to be the case, we must have A = B in Equation
2, so the transformation equation becomes

x′ = A(x− vt). (3)
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Now, recall from the end of the movie, the question of what an
observer moving with the decaying muons sees. To this observer,
the muons are at rest, and so they decay at their normal rate,
and the muon clock must run at the same speed as his watch.
Yet when this observer reaches the bottom of the mountain, the
fraction of the muons left undecayed must agree with the fraction
of undecayed muons measured by the observer stationary with
respect to the Earth. The only possible way to reconcile the two
observers is if the distance travelled by the muons as observed
in coordinates at rest with respect to their motion must appear
smaller by a factor of gamma.

Let’s cast this statement in mathematical terms. Let us say that
the unprimed coordinate system is that at rest with respect to
the decaying muons, and the primed coordinate system at rest
with respect to the Earth. The distance moved by the muons as
measured in their rest frame is L, the height of the mountain.
The distance moved by the muons as measured in the rest frame
of the Earth is L′. This L′ is the ordinary height of the mountain
as it appears on a map. We have argued that we must have

L =
L′

γ
= L′

√
1− v2

c2
. (4)

This result is the Lorentz contraction of length of an object in
the direction of motion of an observer with respect to whom
the object is moving. In this case, the direction of motion of
the muons is downwards, so that the height of the mountain is
reduced in the reference frame of the muons.

We have deduced the necessity of Lorentz contraction from the
phenomenon of time dilation. An observer at rest with respect
to Earth sees that more muons survive to ground level than is
predicted if one assumes that the muon lifetime is the same as
its lifetime at rest. This observer infers that the mean life of the
muons is extended by a factor of γ. The assembly of muons is a
moving clock running slowly. An observer at rest with respect to
the muons sees the same number of muons surviving to ground
level, yet to this observer the muons are at rest and have an
unaltered mean life. The only way this can be true is if, to the
observer moving with the muons, the vertical distance through
which the muons must move to get to ground level, the height
of the mountain, is contracted by the same factor, γ.
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3 The Lorentz Transformations

Now let us see if we can use Equation 4 to deduce the value of
the constant A in the generalized coordinate transform for x in
Equation 3. Again, we regard the primed observer as stationary
with respect to the Earth, and the unprimed observer as sta-
tionary with respect to the muons. We have x′ = A(x − vt).
Now, the length of an object is the difference in the coordinates
of its two ends. Let us call the coordinates of the top and bot-
tom of the mountain x1 and x2 when measured by the unprimed
observer (the observer at rest with respect to the Earth), and
x′1 and x′2 when measured by the primed observer (at rest with
respect to the muons). To determine the height of the mountain,
the unprimed observer (in the rest frame of the muons) measures
x1 and x2 at the same time tm. The mountain is moving towards
the muons at velocity v directed in the −x direction. Inserting
these quantities into Equation 3 we obtain two equations for the
positions of the base and top of the mountain as measured in
the rest frame of the mountain.

x′2 = A(x2 − (−v)tm)
x′1 = A(x1 − (−v)tm)

(5)

Subtracting the second of these equations from the first we ob-
tain

(x′2 − x′1) = A(x2 − x1) (6)

But x′2 − x′1 = L′ and x2 − x1 = L, and hence we have L′ =
AL, or L = L′/A. Comparing this with Equation 4 we deduce
that A = γ. The equation for the transformation of the spatial
coordinates of an event between two coordinate systems is

x′ = γ(x− vt), (7)

where the primed observer is moving at velocity v directed along
the positive x–axis with respect to the unprimed observer. This
is the first of the Lorentz contractions. What about the time
coordinate? Notice that if the primed frame is moving at a
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velocity +v with respect to the unprimed frame, then the un-
primed frame is moving at a velocity −v with respect to the
primed frame. Therefore we can write the expression for x in
terms of x′ and t′ based on Equation 7.

x = γ(x′ + vt′). (8)

Substituting Equation 7 into equation 8 we obtain

x = γ (γ(x− vt) + vt′) (9)

We can rearrange Equation 9 to express t′ in terms of x and t:

γvt′ = (1− γ2)x+ γ2vt, (10)

or

t′ = γt+
(1− γ2)

γv
x. (11)

This can be further simplified by writing

1− γ2 = 1− 1

1− v2

c2

=

“
1− v2

c2

”
−1

1− v2

c2

=
− v2

c2

1− v2

c2

= −v2γ2

c2
.

(12)

Therefore
1− γ2

vγ
=
−γv
c2

. (13)

Substituting Equation 13 into equation 11 we obtain

t′ = γ
(
t− vx

c2

)
. (14)
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Equation 14 gives the Lorentz transformation for the time coor-
dinate of an event. Let us finally group together this equation,
the earlier result (Equation 7) for the transformation of the x–
coordinate, and the remaining transformations y′ = y and z′ = z
since the relative motion along the x–axis has no effect on co-
ordinates in perpendicular directions, to obtain the full set of
Lorentz transformations of coordinates.

t′ = γ
(
t− vx

c2

)
x′ = γ(x− vt)

y′ = y

z′ = z,

(15)

where the primed coordinate system is moving with a velocity v
directed in the positive direction along the x–axis with respect to
the unprimed coordinate system, and where γ = 1/

√
(1−v2/c2).

These equations are collectively called the Lorentz transforma-
tions. They will be the basis of much of the remainder of the
course.

4 What is meant by coordinates?

Before figuring out some of the consequences of the Lorentz
transformations, let us have a quick think about what is meant
by coordinates. This is less obvious in the case of these new
transformations than it was in the case of the older Galilean
ones, because in the new transformations the time on clocks
moving at different velocities passes at different rates. So we
have to be more careful about what we mean by time than we
were before.

So here is what is meant by the time of an event to some ob-
server, say the unprimed observer. The observer possesses a
cartesian grid of points. This grid could actually be constructed,
say out of metre rules with their ends joined in a simple cubic
lattice. The spatial coordinates of any event are found using the
rulers by reading off each of the three components. This much
is pretty clear.
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Now for the time component. Here we have to use our imagi-
nation. We put a clock at each of the vertices of our grid, and
arrange for all these clocks, which are all at rest in the same in-
ertial frame, to be synchronized. See Figure 1 for an illustration
of this construction. There is no problem with synchronizing all
the clocks together, as you might at first worry. Suppose you
send out a light pulse in all directions from a single point in
the coordinate system. For sure this pulse will take longer to
reach the clocks that are further away than the nearer ones. But
you compensate for this effect by setting the initial time on the
further away clocks to be later than on the nearer clocks by the
right amount. The light pulse propogates outwards, starting all
the clocks as it goes, and after a while all the clocks are run-
ning at the same rate (because they are all in the same inertial
frame), and there is no time offset between them. So all the
clocks are now synchronized. Fabulous

Now, suppose we want to know the time of some event. It’s the
time on the nearest clock to the position of the event when the
event happens. If you need a more accurate determination, build
a finer grid with more clocks closer together. The reason for this
construct is to emphasize that the effect of moving clocks run-
ning slow, or more generally of the difference between the time
coordinates of the same event in different inertial frames has
nothing to do with the finite propagation velocity of the speed
of light to some remote observer. It is not the case that the time
of an event is the time at which the light from the event reaches
an observer at the origin of the coordinate system. No, there is
no special origin and time is a quantity that can be measured
just as well locally at any point in the coordinate system. A zero
of time is chosen arbitrarily just as a zero position (the origin)
is chosen, but these zeros have no physical significance except
for an additive constant in the determination of the coordinates
of events.

5 An example - Analysis of charge

teleportation with Lorentz transfor-

mations

Back to charge teleportation, and let us see whether this holds
up in the world or Lorentz transformations. Suppose, to an
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Figure 1: A coordinate system for special relativity. The frame-
work of points represents a cartesian coordinate system, here
shown in two dimensions. At each vertex is a clock. The clocks
are all synchronised.
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observer stationary with respect to the Earth, an electron were
able to disappear at time t = 0 and appear at the same time
in a nearby galaxy, say at a distance of 20 Mpc which is 6.16×
1023 [m]. The coordinates of the reappearance in this coordinate
system would be t = 0 [s] and x = 6.16× 1023 [m]. Now suppose
an observer is moving at a velocity of 1/2 of the speed of light.
Let us calculate γ for this observer. It is γ = 1/

√
(1− 1/4) =

2/
√

3 = 1.15. The timescales in the two coordinate systems have
their origins set to coincide at the disappearance of the electron
on earth, so for the disappearance t0 = t′0 = 0 [s]. Let us figure
out the t′ coordinate of the event of the electron reappearing to
this observer.

t′ [s] = 1.15
(

0 [s]− 0.5×3×108 [m/s]×6.16×1023 [m]
(3×108 [m/s])2

)
= −1.18× 1015 [s]
= −37× 106 [years].

(16)

To this observer, then, the electron re-appears in the Virgo clus-
ter (about the right distance) 37 million years before it vanished
on Earth! To this observer, then, charge is not conserved, since
for 37 million years there are two electrons in the Universe where
before and after this time interval there were only one. And you
can see that had the primed observer been moving in the direc-
tion of decreasing x, The charge would have vanished altogether
for this time period, and then reappeared. This is absurd, and
to get away from these kinds of problems, we end up conclud-
ing that nothing can travel faster than the speed of light. This
prevents any inertial observer from seeing events occur outside
of their causal sequence; if one event causes another, then to all
observers the event that does the causing must happen before
the event it causes. However, different inertial observers can dis-
agree about the sequence of events that are not causally related.
More about this later in the course.
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