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1 Review of electron volts

As we have discussed several times, the nuclear, heavy ion, parti-
cle and astrophysics communities make heavy use of the electron
volt units. I thought it worth conducting a brief recap on these
units before adding one more trick to the bag. An electron volt
is the energy gained by an electron in moving between two elec-
trodes between which a potential difference of one volt is applied
(the destination electrode is the more positive of the two). It is
easy to see why 1 eV = 10−19 J. Let us say that the electrodes
are separated by a distance d. Then the force on the electron
is F = eV/d. Then the work done by the electron in moving
between the electrodes is Fd = eV . Since V is 1 volt, the work
done is equal to the numerical value of the electron charge e, in
Joules. Therefore 1 eV = 1.6× 10−19 J.

Recall that since for a particle at rest, the energy ER = m0c
2,

where m0 is the rest mass, it is only necessary to specify the
rest energy ER and the rest mass m0 can always be deduced.
Since ER is almost always a more useful quantity in relativistic
problems, it is customary to state that the rest mass of the
electron, for example is 0.511 MeV/c2. This means that the
energy of an electron at rest is 0.511 MeV. The c2 to the right
of the units is a reminder that to work out the rest mass, the
energy, converted from eV into J should then be divided by c2

to obtain a rest mass in kilograms.

Recall also that there is also a quantity with energy units directly
related to the momentum of a particle, EP = |~p|c. Indeed, for a
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massless particle such as a photon, EP is the energy of a photon
having momentum |~p|. For other massive particles, the total
energy E is related to the momentum energy EP and the rest
energy ER by

E2 = E2
P + E2

R. (1)

This is the same equation as the energy–momentum–mass rela-
tion,

E2 = p2c2 +m2
0c

4. (2)

Sometimes it is useful to use electron volt units even in non-
relativistic problems. For example, recall that the kinetic energy
T of a relativistic particle is

T = (γ − 1)m0c
2. (3)

However, in the case where one has a particle moving much
slower than the speed of light, the kinetic energy can be written
as TNONRELATIVISTIC = mv2/2. Even though this particle is
non-relativistic, the kinetic energy can be deduced from the rest
energy ER = m0c

2 and β = v/c, as follows:

TNONRELATIVISTIC =
1

2
m0v

2 =
1

2

(
m0c

2
)(v2

c2

)
=

1

2
ERβ

2. (4)

So, for example, a particle whose rest mass is 1 GeV/c2 moving
at 1/1000 of the speed of light has a kinetic energy of 500 eV.
This method is often easier than converting back to SI units and
using TNONRELATIVISTIC = mv2/2. Similarly for non-relativistic
momentum we have

pNONRELATIVISTIC = m0v
EP = pNONRELATIVISTICc = m0vc = (m0c

2)
(

v
c

)
= ERβ.

(5)

So, for example, the same particle has a momentum of 1 MeV/c.

Throughout the above treatment, I have used the rest mass m0

of a particle, defined as the energy released were the particle to
be converted entirely to energy. I did also discuss the inertial
mass m, defined as the ratio of the momentum of a particle to
its velocity. Recall that these two masses associated with the
same particle are related by m = γm0, and that the modern
convention is to adopt the rest mass m0 into common use, and
to use the total energy E in place of the inertial mass, since
E = mc2 just as ER = m0c

2.
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2 De Broglie Wavelength

In quantum mechanics, the nature of a scattering event is of-
ten best found out by deducing the De Broglie wavelength of
an incident particle and comparing it with the dimension of the
target. For example, if the target is a nucleus, which typically
has a dimension of a few fermi, or a few ×10−15 m, an incom-
ing projectile having a De Broglie wavelength very much shorter
than the dimension of the nucleus, if it scatters elastically, will
have the scattering resemble the classical collision of two hard
spheres. If on the other hand, the De Broglie wavelength of
the incoming projectile is of the order of, or longer than, the
dimension of the target, the scattering will be much ‘softer’,
and correct analysis will involve quantum mechanics which al-
lows or interference between different paths that the projectile
might take when interacting with the target. The De Broglie
wavelength λ is given by

λ =
h

p
, (6)

where p is the momentum of the incoming particle. Once again,
although it is an option to convert the momentum to kg m s−1,
there is typically an easier way, since the formula for De Broglie
wavelength can be re-written as follows,

λ =
h

p
=

2πh̄c

pc
=

2πh̄c

EP

(7)

Now, a very useful thing to remember to save time when calcu-
lating De Broglie wavelengths is that

h̄c = 0.2 GeV fm. (8)

Taking our particle having rest mass 1 GeV/c2 and velocity
0.001c again, it’s momentum energy was 1 MeV. Therefore
its De Broglie wavelength is 6.28 × 0.2[GeV fm]/0.001[GeV] =
1256 fm, so a collision of this particle with any stationary nu-
cleus would be very soft indeed - more like diffraction of a light
beam by a spherical ball than two hard spheres colliding! If the
incident particle is relativistic, then the relativistic momentum
energy should be calculated using EP =

√
E2 − E2

R; once you
have EP the De Broglie wavelength follows from Equation 7.
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For another example, try this one:

Will a 120 keV gamma ray striking a proton have a soft or
hard collision with it? For a gamma ray, EP = E, so the
momentum energy is 120 keV. The De Broglie wavelength is
then 2π × 0.2[GeV fm]/0.000120[GeV], which is several thou-
sand fermi, so the collision with a single proton will be soft.
The story would be very different for 100 GeV cosmic ray gam-
mas, for which the De Broglie wavelength is 0.012 fermi; these
gammas would undergo hard-sphere elastic collisions with pro-
tons.

3 Approximations for highly relativis-

tic particles

It is often true that particles in relativity problems are highly
relativistic, meaning that they are moving extremely close to the
speed of light. Under such circumstances, we can make approx-
imations that will prove useful for doing problems. Suppose we
are told to calculate how much slower than the speed of light
a particle with a gamma factor γ is moving, where γ is signif-
icantly greater than 1. Let the difference between the particle
speed and c be ε. Then we have

γ = 1q
1− v2

c2

= 1r
1− (c−ε)2

c2

= 1r
c2−(c−ε)2

c2

' 1q
c2−c2+2cε

c2

'
√

c
2ε
.

(9)

This approximation is only valid for very relativistic particles,
say for γ greater than 10. However, many for many high energy
physics problems this is true of most or all of the particles in
the interaction. Here is an example of how to use this:

A high energy proton having total energy E and and a photon
are fired from the surface of the Earth towards the moon simul-
taneously. If the distance to the moon is D find an expression
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for the time difference between the arrival of the photon and the
arrival of the proton in terms of E, the proton mass MP , c, and
the distance D if E �MP .

The γ factor for the proton is γ = E/(MP c
2). Substituting into

Equation 9 we get c/(2ε) = E2/(M2
P c

4), or ε = (M2
P c

5)/(2E2).
The light travel time to the moon is D/c. The proton travel
time is D/(c− ε). The difference between these times is

D

c− ε
− D

c
=

D

c
(
1− ε

c

) − D

c
(10)

We can use a Binomial expansion to simplify this.

D

c(1− ε
c)
− D

c
' D

c

(
1 + ε

c

)
− D

c

' Dε
c2
.

(11)

Therefore the time delay between the arrival of the photon and
the proton can be written approximately as

∆t =
D

c2
c(MP c

2)2

2E2
=
D

2c

(
MP c

2

E

)2

(12)

For a 100 GeV proton, assuming a proton rest energy of about
1GeV, and a lunar distance of about 3.8×108 m, this time delay
is about (3.8× 108[m])/(2× 3× 108[m s−1])× (1/100)2 = 63µs.

4 Preparation for the exam

Easily the most useful preparation for the exam is practicing
examples. The past paper from last year and the practice pa-
per that I produced the first year I took the course, which also
has solutions, will be the most useful preparation for the exam
this year. In addition, please note that there are certain for-
mulae that you would do well to memorize. Only the Lorentz
transformations appear on the front page of the exam paper -
all other formulae that you think you might make use of should
be committed to memory.
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My advice would be to memorise the key results from each of
the topics we have studied in detail. These are - time dilation,
Lorentz contraction, addition of velocities, the Doppler effect,
the relationships between energy, rest mass, and momentum for
massless and massive particles, and the relativistic expression
for kinetic energy. The Lorentz transformations themselves are
written on the front of the exam paper. This means you need
to commit about six formulae to memory. This should not be
beyond your capabilities.

Regarding derivations, I do not advice the memorizing of long
derivations. It is probably useful to be familiar with the basic
arguments by which I derived the time dilation, the Lorentz
contraction, addition of velocities, and by which I argued that
the rest energy is E = m0c

2.

Other than this, focus on doing the available examples. I am
around if you have trouble. I do appreciate an email giving ad-
vanced notice of a visit if at all possible. Sometimes the question
can be answered by email, saving us all time.

Here are another couple of examples, this time focusing more on
relativistic kinematics - the distortions in lengths and times due
to motion at velocities near to the speed of light.

5 Example 1

Two identical twins separate, one staying on Earth, at rest, and
the other travelling to a star about 20 light years away at a speed
of 0.8c. When the moving twin reaches the star, he turns around
and comes back again at the same speed. How much older or
younger is this twin than his brother when he returns to Earth?
Where is the asymmetry between the two brothers?

6 Example 2

A man carrying a pole horizontally runs at a constant speed into
a barn whose long axis is parallel to the pole. The barn is 20
metres in length. The rest length of the pole is 25 metres. Once
the rear end of the pole enters the barn, the rear door is shut
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behind the pole. Although the pole at rest is longer than the barn,
and therefore when at rest it won’t fit, the runner gets around
this difficulty by running so fast that the pole’s length is Lorentz
contracted, and the pole does fit into the barn. For this problem,
consider the runner to be travelling in the +x–direction.

1. At what fraction of c must the runner sprint so that the
pole is Lorentz contracted to a length of 15 metres to an
observer in the reference frame of the barn? What are the
values of the special relativistic β and γ corresponding to
this speed?

2. In the (unprimed) reference frame of the barn, considering
the event of the rear of the pole entering the barn to have
coordinates (ct = 0, x = 0), what are the coordinates of
the event of the front of the pole touching the far wall of
the barn?

3. Consider a second (primed) observer in the reference frame
of the runner. In this frame, calculate the coordinates
(ct′, x′) of:

(a) The rear of the pole entering the rear of the barn;

(b) The front of the pole touching the front wall of the
barn.

4. In the reference frame of the runner, once the front of the
pole hits the front of the barn, how much longer does it
take until the rear of the pole enters the barn door? Show
that the rear end of the pole doesn’t receive information
that the front end has hit the far wall until after it has
entered the barn. Can the pole be perfectly rigid? Explain
your answer.
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