Probing the Dark Universe with Weak Gravitational Lensing

Andy Taylor

Institute for Astronomy, School of Physics, University of Edinburgh, Royal Observatory, Edinburgh, U.K.

With David Bacon, Meghan Grey, Michael Brown, Tom Kitching, Chris Wolf, Klaus Meisenheimer, Bhuvnesh Jain
The “Standard Model” of Cosmology

- **WMAP, SNIa, 2dFGRS, Sloan Digital Sky Survey:**
 - 70% Dark Energy
 - 25% Dark Matter
 - 5% Baryonic Matter
 - Spatially flat

- **Four outstanding problems:**
 - Dark Matter
 - Dark Energy
 - Inflation
 - Galaxy formation
Gravitational Lensing

• Hubble Space Telescope deep field of a galaxy cluster – the large gravitational lens, Abell 2218.
Gravitational Lensing

- A simple scattering experiment:

\[ds^2 = -(1 + 2\Phi)dt^2 + a^2(t)(1 - 2\Phi)dr_idr^i \]
Gravitational Lens Distortions

- Galaxy ellipticity, e:
- Lensing effect:
 \[e' = e + 2\gamma \]
- On average $\langle e \rangle = 0$.
- So $\langle e' \rangle = 2\gamma$.
- Shear matrix:
 \[\gamma = \gamma_1 + \gamma_2 \]
Weak Lensing

• An observable is the shear (2-d tidal) matrix:

\[
\gamma_{ij} = \left(\partial_i \partial_j - \frac{1}{2} \delta_{ij} \partial^2 \right) \phi = \begin{pmatrix} \gamma_1 & \gamma_2 \\ \gamma_2 & -\gamma_1 \end{pmatrix}
\]

(Take derivatives on sky.)

• The 2-d lensing scalar potential, \(\phi \), is a projected Newtonian potential, \(\Phi \):

\[
\phi(r, \theta) = 2 \int_0^r dr' \left(\frac{r - r'}{rr'} \right) \Phi(r')
\]
Mapping the Dark Matter

- From shear to projected density (Kaiser & Squires, 1993):

\[\phi = 2 \partial^{-4}_{ij} \partial_i \partial_j \gamma_{ij} \]

Surface potential

\[\kappa = \frac{1}{2} \partial^2 \phi \]

Surface density

\[= \frac{\Sigma}{\Sigma_c} \]
Supercluster Abell 901/2 in COMBO-17 Survey

- $z=0.16$
- $R=24.5$

Mass and light in Supercluster A901/2

Dark Matter contours, κ.

Elliptical galaxy light shading.

Error: $\Delta \kappa = 0.02$ (1–contour)

Mapping the Dark Matter in 3-D

- The lens potential, ϕ, is a radial integral over the 3-D Newtonian potential, Φ:

$$\phi(r, \theta) = 2 \int_0^r dr' \left(\frac{r - r'}{rr'} \right) \Phi(r')$$
Mapping the Dark Matter in 3-D

• With source distances this can be exactly solved to recover the 3-D Newtonian potential: (Taylor 2001)

\[\Phi(r) = \frac{1}{2} \partial_r r^2 \partial_r \phi(r, \theta) \]
Is 3-D dark matter mapping practical?

- Shot-noise for 3-D dark matter potential map:
 \[\Delta \Phi = 10^{-7} \left(\frac{n_2}{20/\text{sq arcmin}} \right)^{-1/2} \left(\frac{\Delta z}{0.05} \right)^{-5/2} \left(\frac{z}{0.1} \right) \approx \Phi_{\text{cluster}} < \Phi_{\text{LSS}} \]

- So Wiener filter in redshift:
 \[\Phi'(z_i) = \left[S(S+N)^{-1} \right]_{ij} \Phi(z_j) \]
 \[S_{ij} = \left\langle \Phi(z_i) \Phi(z_j) \right\rangle = S \delta^K_{ij} \]

- Can now resolve clusters.
- 3-D lensing quality data already exists...COMBO-17 has 17 band photometric redshifts with \(\Delta z = 0.01 \).
The 3-D dark matter potential field

(2-σ threshold)

The 3-D dark matter potential and galaxy number density fields

- Potential Field:

- Galaxy number density:

A901/2 + CB1 Cluster parameters

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Redshift</th>
<th>M (<0.5Mpc)</th>
<th>L(<0.5Mpc)</th>
<th>M/L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(10^{13}M_{\odot})</td>
<td>(10^{11}L_{\odot})</td>
<td>(M_{\odot}/L_{\odot})</td>
</tr>
<tr>
<td>A901a</td>
<td>0.16</td>
<td>10.8+-2</td>
<td>24.7</td>
<td>43.7</td>
</tr>
<tr>
<td>A901b</td>
<td>0.16</td>
<td>8.4+-2</td>
<td>13.6</td>
<td>62.2</td>
</tr>
<tr>
<td>A902</td>
<td>0.16</td>
<td>5.1+-3</td>
<td>19.5</td>
<td>26.2</td>
</tr>
<tr>
<td>CB1</td>
<td>0.48</td>
<td>12.0+-6</td>
<td>13.0</td>
<td>92.3</td>
</tr>
</tbody>
</table>

- Estimate projection-free masses of all objects.
- Erratic mass-to-light ratio – non-equilibrium system.
- Modelling with analytic and numerical methods.

Cosmic Shear

- Lensing by the large-scale dark matter distribution.
- First detected by 4 groups in 2000.
Four random fields in COMBO-17 survey

2-D Dark Matter Maps:

- Area = 1 sq deg.
- Depth: $z = 0.8$.
- Scale: 10 Mpc/h.
Cosmic Shear Power Spectrum

- Maximum Likelihood Analysis of Cosmic Shear.
 Measured over 4 random COMBO-17 fields.

\[z_m = 0.85 \pm 0.05 \]
from photometric redshifts

Shear Amplitude

\[\frac{C_1}{\sigma^2} \]

Results from Cosmic Shear

• Combine with 2dF Galaxy Redshift Survey & pre-WMAP CMB

\[\sigma_8 = 0.73 \pm 0.05 \]
\[\Omega_m = 0.27 \pm 0.02 \]

\[\sigma_8(\Omega_m/0.3)^{0.49} = 0.71 \pm 0.09 \]

(h=0.72, \(\tau = 0.1 \))

Shear probes the density field at different redshifts:

\[
C_l^{\gamma\gamma}(z, z') = \frac{9}{4} H_0^4 \Omega_m^2 \int_0^{r_H} dr \, P_m(k = l / r(z), z) W^L[r(z)] W^L[r(z')]
\]

Matter power spectrum

\[
P_m(k, z) = \left\langle |\delta(k, z)|^2 \right\rangle
\]
The Growth of Dark Matter Clustering

- Evolution of the matter power spectrum:

\[P_m(k, z) = \langle |\delta(k, z)|^2 \rangle = Ak^\alpha e^{-z/z_0} \]

\[\chi^2 - \text{fit to data.} \]

First detection of evolution of Dark matter clustering. A fundamental prediction of Cosmology.

(Bacon & Taylor, et al 2004, MN)
Geometric test of Dark Energy

(Bhuvnesh Jain & AT, 2003, Phys Rev Lett, 91,1302)

- Depends only on Ω_v, $w = p/\rho$ (and $\Omega_m + \Omega_K$).

$$R(\Omega_v, w) = \frac{\gamma(z_1, z_L)}{\gamma(z_2, z_L)} = \frac{r(z_2)[r(z_1) - r(z_L)]}{r(z_1)[r(z_2) - r(z_L)]}.$$
Geometric test of Dark Energy

- Estimate parameters by minimising χ^2-fit over all source configurations.

$$\chi^2 = \sum_{ijmn} \left(R(z_i, z_j | \Omega_L, w) - \frac{\gamma_i}{\gamma_j} \right) \text{Cov}(R, R)^{-1} \left(R(z_m, z_n | \Omega_L, w) - \frac{\gamma_m}{\gamma_n} \right)$$
Geometric test of Dark Energy
(with Tom Kitching and David Bacon)

- Geometric test applied to A901/2 clusters.
- $\Delta w \sim 0.8$ from 3 clusters.
- Uncertainty scales as:

$$\frac{\Delta w}{w} \propto \frac{1}{M} \frac{\sqrt{\sigma_c^2 / N_i + C^{\gamma \gamma}}}{N_{\text{bin}} \sqrt{N_{\text{cl}}}}$$

- $\sim 1\%$ for darkCAM on VISTA.
Measuring the evolution of Dark Energy

- Measure Ω_v and $w(a)=w_0+w_a(1-a)$.
- Estimate error for SNAP ($z_m=1.5$).
- 10% of sky: $\Delta w=\sim1\%$, $\Delta w_a=\sim10\%$.

Jain & Taylor, PhysRevLett, 2003
darkCAM on VISTA

- Comparison of lensing telescopes grasp (area x fov) and timescales:

 - Proposal to PPARC to start in 2009.
 - w to ~1% accuracy.
 - 3-D dark matter map of sky.

VISTA (Visible & Infrared Survey Telescope for Astronomy)

- darkCAM
Summary

• With 3-D lensing (shear + redshifts) we can now measure the 3-D Dark Matter distribution.

• Detect the growth of Dark Matter clustering.

• And measure the equation of state of dark energy.

• Can measure dark energy properties in near future with darkCAM on VISTA.