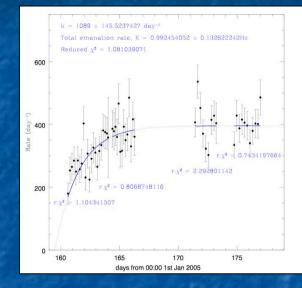

Radon Emanation Testing for DRIFT

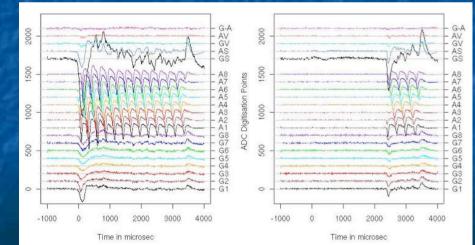
Direct & independent measurement of Rn emanation from detector components.

Sean Paling - Sheffield.



CYGNUS mtg - July 2007 Boulby

Rn in DRIFT-II

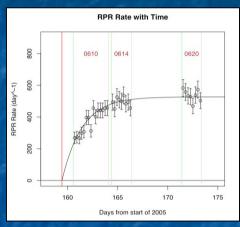

Cathode crossers vs time

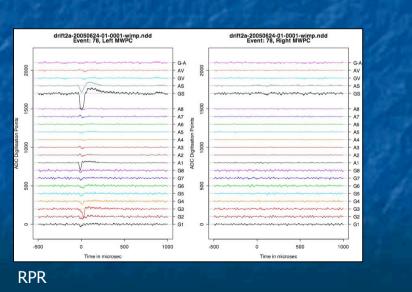
2

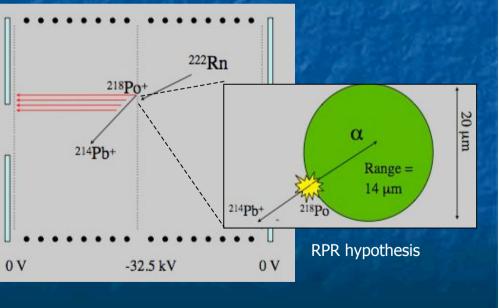
Clear evidence for **ALPHAs** from Radon decay... V Totally fiducial alphas detected produced INSIDE detector V Alpha Energies consistently ~6MeV V Rate of alphas vs time consistent with expectation for Rn emanation

BUT - alphas alone are NOT a problem!

Cathode crossing alpha


3d reconstruction


Radon Progeny Recoils (RPRs)


PROBLEM - we also saw mystery recoil-like events in background data.

- ~200-600 / day (50-250 keV)
- v Increase with time consistent with Rn emanation.
- v A limiting background

Hypothesis: Recoil of radon progeny on central cathode - with alpha absorbed in wire.

3

What is producing the Rn?

Nuclear Instruments and Methods in Physics Research A329 (1993) 291-298 North-Holland

222 Rn emanation into vacuum

Manqing Liu, H.W. Lee and A.B. McDonald Department of Physics, Queen's University, Kingston, Ontario, Canada K7L 3N6

Received 3 November 1992

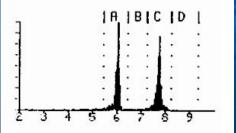
Table 1

Experimental Rn emanation rates into vacuum

Materials	222 Rn emanation rate	²³⁸ U content [7] [10 ⁻⁹ g/g (ppb)]	
molecular sieve 13X	1200 ± 120 1-1 hr-1	225±19	
activated charcoal	250 ± 50 1-1 hr -1		
silica gel	440 ± 501 - 1hr - 1	197	
coax cable RG-59	60 ± 30 m ⁻¹ hr ⁻¹	0000	
twinaxial PE cable	<2 m ⁻¹ hr ⁻¹		
coax cable 8240	6±2m-1hr-1		
coax cable 9067	< 0.6 m ⁻¹ hr ⁻¹	< 10	
Kevlar 3/8 in. rope	< 0.3 m ⁻¹ hr ⁻¹	0.07	
8 in. diameter PMT	< 20 PMT ⁻¹ hr ⁻¹		
low-rad. glass	<1.6 m ⁻² hr ⁻¹	50	
aluminum reflector	<1.5 m ⁻² hr ⁻¹		
black ABS plastic	<1.1 m ⁻² hr ⁻¹	20 ± 5	
white polyethylene	< 0.9 m ⁻² hr ⁻¹		
acrylic	< 0.1 m ⁻² hr ⁻¹		
Al plates	< 0.5 m ⁻² hr ⁻¹	5	
SS 304L [supplier 1]	<15 m ⁻² hr ⁻¹	<1	
SS 304L [supplier 2]	< 0.3 m ⁻² hr ⁻¹		


SNO Rn emanation survey...

Using low-background acrylic Lucas Cell (ZnS lined chamber) and cold traps to condense Rn output.


Total background = 20 counts / day (3 / day from the Lucas cell)

Cables? 60 Rn atoms / m / hr (72m in DIIa = 1.2Hz)

Durridge Rad7 Rn Detector

Alpha energy spectrum (Rn daughters)

A = ²¹⁸Po (6.0 MeV) B = ²¹⁶Po (6.8 MeV) C = ²¹⁴Po (7.7 MeV) D = ²¹²Po (8.7 MeV) A low-background, real-time, solid state Radon detector. (www://durridge.com/Manuals.htm)

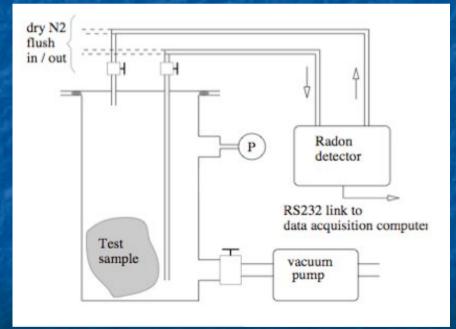
• Uses alpha spectrometry to distinguish between daughters of ²²²Rn and ²²⁰Rn decaying in a 0.7l internal test chamber.

• Sample gas filtering followed by alpha identification means no assumptions about initial equilibrium required - & no problems of increasing background from long-lived PB210.

• Intrinsic Background <1 count / hr (<2×10⁻⁴ Bq)

Real time environmental radon monitor

Rn Emanation Facility


Rad 7 detector

Test Procedure:

- Place sample in emanation chamber
- Evacuate emanation chamber
- Allow Rn emanation for many days (\geq 7)
- Back-fill with dry Nitrogen to P = 1 atm.
- Sample gas by circulating through Rad7 detector for ≥1 day

Pressure guage

33I emanation chamber

6

Rn Emanation

Radon emanation into chamber

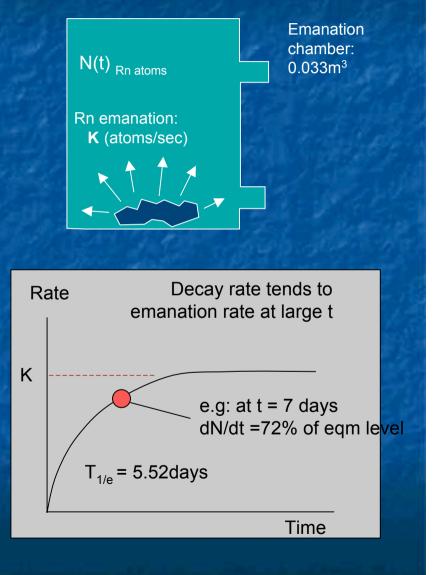
Rate of change of number of Rn atoms (N)

$$\frac{dN}{dt} = K - \frac{N}{T}$$

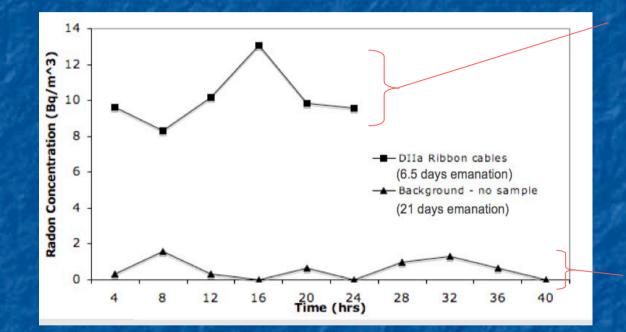
Rn emanation rate

Rn decay T = 1/e Rn decay time = 3.85/ln2 = 5.52 days

Solving:


7

Number of Rn atoms (N)


$$N = KT(1 - e^{-t/T})$$

Number of Rn decays $(dN/dt_{decay} = N/T)$

$$\frac{dN}{dt}_{(Rn_decay)} = K(1 - e^{-t/T})$$

Example (raw) results

DRIFT-IIa Ribbon cables Result = 10.1 +/- 0.7 Bq/m³ (Error = 1 sigma from STDerr)

Background (Nitrogen Back-fill) Result = 0.6 + - 0.2 Bq/m³ (Error = 1 sigma from STDerr)

Note: Result = Rn decays per second (NOT radon + daughter decays)

Raw data adjustments

1) Volume Adjustment: Accounting for the volumes of the test vessel + test chamber (33+0.7 litres):

2) Humidity Adjustment: Accounting for loss in sensitivity due to plate-out on water droplets in detector (Humidity <6% - giving an adjustment of <6%)

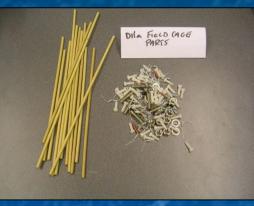
3) Background Subtraction: Remove background from measurement measured background: = 0.021 +/- 0.007 Bq total activity

4) Emanation time adjustment: To convert result to expected equilibrium level. Adjust by: $1/(1 - e^{t/5.52})$ (with 't' in days)

Backgrounds & Sensitivity

Background tests:

Sample Fill gas		Emanation time (days)	Mean humidity	Raw result (Bq/m ³)	Adjusted result (Rn atoms.s ⁻¹)
Empty Vessel	Dry nitrogen	0	20.0	0.5 +/- 0.1	0.017 +/- 0.003
Empty Vessel	Dry nitrogen	21	22.7	0.6 +/- 0.2	0.021 +/- 0.007


Background level measurements consistent and reproducible (with a given fill-gas) and apparently independent of emanation time (so likely not due to production of Rn in system)

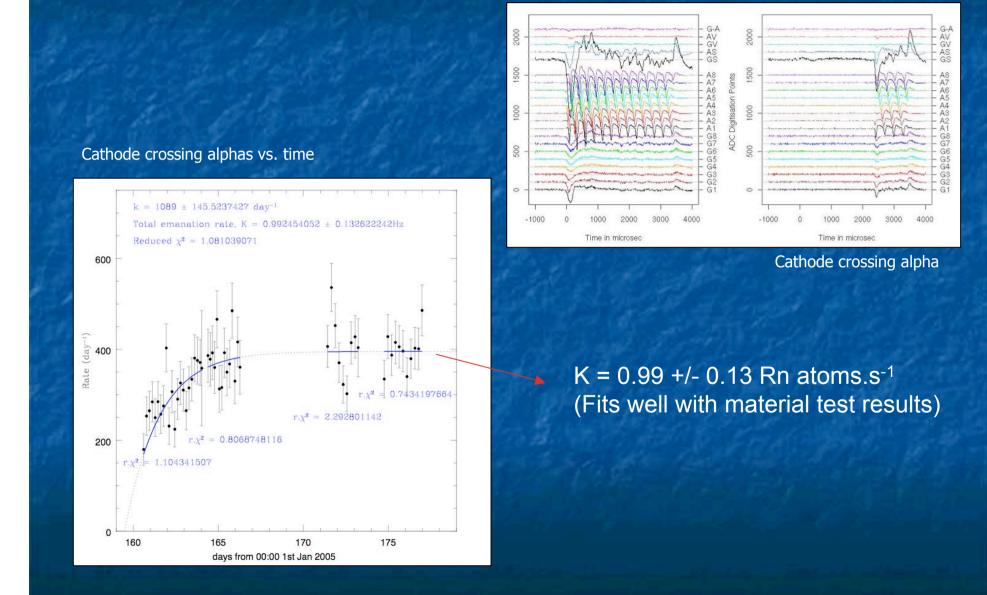
Limit of sensitivity (The minimum activity detectable) is determined from error in the background $\times 2$ (for 2 sigma) and $\times 1.4$ (to account for combination of errors for sample and background)

Limit of Sensitivity ~ 0.02 Rn atoms.s⁻¹ (for emanation time >7 days)

(About 3 times higher than the SNO emanation tests)

DIIa Samples

DIIa sample results

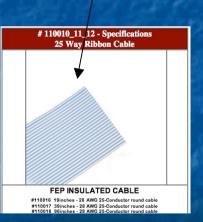

DIIa samples:

Sample (Emanating into vacuum)	Fill gas	Emanation time (days)	Humidity (%)	Raw result (Bq/m ³)	Adjusted result (Rn atoms.s ⁻¹)
RG58 coax cables (72m)	Dry N2	12.5	24	9.4 +/- 0.7	0.36 +/- 0.03
Electronics boxes	Dry N2	12	37	1.5 +/- 0.3	0.05 +/- 0.01
Ribbon cables	Dry N2	6.5	23	10.1 +/- 0.7	0.50 +/- 0.03
Grouping Boards	Dry N2	10	37	0.3 +/- 0.2	<0.02 *
Single core & thin coax cables	Dry N2	7	19	1.3 +/- 0.3	0.04 +/- 0.02
Field cage parts	Dry N2	7	33.3	0.6 +/- 0.2	<0.03 *
and the second	18 - 18 1 8			Total	0.95 +/- 0.05

* The limit of sensitivity of the method (see above)

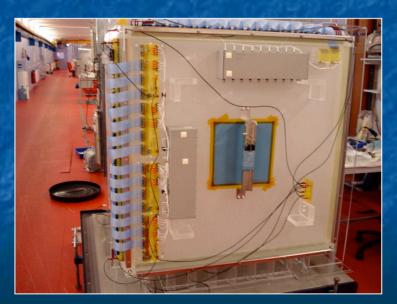
- Main offenders = Ribbon cables and Coax. cables
- Total from items measured = 0.95 + 0.05 Rn atoms.s⁻¹:

Comparison with DIIa data


Replacement DIIa components?

Alternative material samples:

Note: the quantities used are approximately the same as would be required in future DRIFT modules.


Sample (Emanating into vacuum)	Fill gas	Emanation time (days)	Humidity (%)	Raw result (Bq/m ³)	Adjusted result (Rn atoms.s ⁻¹)
PTFE signal cables	Dry N2	20	23	0.4 +/- 0.1	<0.02*
Low-Pb ribbon cables	Dry N2	12	17	4.3 +/- 0.3	0.14 +/- 0.01
FEP ribbon cables	Dry N2	12.5	24	0.6 +/- 0.2	<0.02*

* The limit of sensitivity of the method (see above)

Radon reduction refit @ Boulby (Jan/Feb 2007)

Expect SIGNIFICANT decrease in Rn

DIIa results

DRIFT Run

Cathode Crossing Alphas

DRIFT-IIa: July 2005

DRIFT-IIb: July 2006 RG58 cable sheaths removed CS2 directed into inner vessel

DRIFT-IIb: Feb 2006 New Coax and Ribbon cables 390 events / day

99.3 events / day

92% reduction

31.3 events / day

Summary

We have a simple but effective Rn emanation facility for measurement / selection of detector components.

 We have used the system to identify the most offending Rn emanators in DIIa - and to screen replacement parts for the DIIb low-Rn refit.

Although simple - the limit of sensitivity is ~ 0.02 atoms.s⁻¹: (comparable with the purpose-built SNO apparatus & a factor >20 below level seen with (e.g) the DIIa ribbon cables).

Need anything measured? - Let me know...

What next?

Current DRIFT-IIb tests...

We have replaced the central cathode to reduce RPRs from long-lived Pb210 (22yr half life).
Now running at high CS₂ flow rate (8 vessel changes per day).

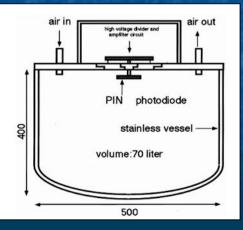
Longer term... We need to find a way to discriminate against RPRs...

- Absolute Z position from diffusion?
- Take signal from cathode?
- Scintillator cathode?
- Cathode screening?
- Optical readout?

DIIb July 23rd 2007

17

Future material screening.


We have plans to expand / improve our material screening capabilities @ Boulby

• An additional ultra-low background Germanium detector - sensitivity of 10^{-1} - 10^{-2} ppb U/Th for typical samples.

• An improved Rn emanation detection system. An electrostatic trapping device with PIN photodiode detector (similar to module currently used at Modane)

Target sensitivity $\sim 10^{-4}$ atoms.s⁻¹ (×100 improvement)

