Status and Perspectives Forschungszentrum Karlsruhe in der Helmholtzgemeinschaft of LOPES

Andreas Haungs

haungs@ik.fzk.de

ARENA

Cosmic Rays

- The cosmic ray energy spectrum is not fully understood
- Above 10¹⁴eV primary energy: only air-shower measurements possible
- ➔ More and better experiments needed: new detection techniques ?

LOPES = LOfar PrototypE Station <u>Questions:</u> LOFAR as Cosmic Ray Detector ? AUGER enhancement with radio measurements? <u>Needed:</u> Calibration of the radio emission in air showers !

> -Detection threshold -Signal dependence on primary energy primary mass geomagnetic angle zenith angle -Lateral extension

➔ "known" air showers

→ well-calibrated air shower experiment

12 km

KASCADE-Grande

= <u>KA</u>rlsruhe <u>Shower</u> <u>Core and Array</u> <u>DE</u>tector + Grande

Measurements of air showers in the energy range $E_0 = 100 \text{ TeV} - 1 \text{ EeV}$

AREN

LOPES : Radio shower detection

•deflection of electron-positron pairs in the Earth's magnetic field
→ coherent emission at low frequencies

radio detection
is a calorimetric measure
observe 24 hrs/day

- 30 dipole antennas at KASCADE-Grande
- calibration of radio emission
- theory of radio emission and implementation in CORSIKA
- improvement/optimisation hardware (for application in Auger/LOFAR)

5

electron

~2/7

positron

Radio shower detection: Simulations

 $E_{
m EW}(ec{R}, 2\pi
u) \; [\mu {
m V} \; {
m m}^{-1} \; {
m MHz}^{-1}]$

Hardware of LOPES:

LOPES-Antenna Receiver Module Memory Buffer Clock and Trigger Board

short dipole
beam width
80°-120°
(parallel/ perpendicular
to dipole)

- direct sampling with minimal analog parts: amplifier, filter, AD-converter
- sampling with 80MSPS in the 2nd Nyquist domain of the ADC
- uses PC133type memory
 up to 6.1 s per channel
 pre- and post-trigger capability

• generates and distributes clock and accepts and distributes trigger

LOPES : First step: 10 antennas at KASCADE (2004)

8

ARENA

LOPES 10 :

Calibration of radio emission in air showers: ← check or improvement of Allan's parametrisation of the early measurements ← quantification of dependencies

 $\varepsilon_{v} = 20 \cdot (E / 10^{17} eV) \cdot \sin \alpha \cdot \cos \theta \cdot exp(-R / R_{0}(v,\theta))$ [\mu V / m MHz]

- radio pulse amplitude per unit bandwith
 - primary energy
- angle to geomagnetic field
- zenith angle
 - distance to shower axis
- scaling radius (110 m at 55 MHz)

H.R. Allan, review 1971, p.269

ε_ν Ε

α

θ

R

R₀

LOPES 10 Analysis : Results Proof of Principle

June 2006

- 1. instrumental delay correction from TV-phases
- 2. frequency dependent gain correction
- 3. filtering of narrow band interference
- 4. flagging of antennas
- 5. correction of trigger & instrumental delay
- 6. beam forming in the direction of the air shower
- 7. quantification of peak parameters

LOPES: Data Processing Beamforming

Electric field and power before time shifting:

Andreas Haungs - LOPES Collaborations

LOPES: Data Processing Event Discrimination

- criteria for "good" events:
 - existence of a coherent pulse
 - position in time of pulse
 - uniform pulse height in all antennas
- selection currently done manually

LOPES 10 : Analysis of central, distant, and inclined events

 Showers trigger LOPES with KASCADE:

 → central event
 → basic dependencies

 But most have also trigger in Grande

 → higher energies
 → larger distances (lateral extension)

LOPES 10 Analysis : Results Central events

- 228 out of 412 events considered good
- Fraction of "good" to "bad" events increases with increasing muon number and increasing geomagnetic angle
 fraction also increases with zenith angle

Horneffer et al. – LOPES collaboration, 29th ICRC, Pune, 2005

 $\epsilon_{\rm v} \thicksim \text{cos} \ \alpha$

Horneffer et al. – LOPES collaboration, 29th ICRC, Pune, 2005

LOPES 10 Analysis : Results angle dependencies vs. simulations

Monte Carlo Simulations: separate dependence expected

on geomagnetic (Earth magnetic field) on zenith (footprint broadening & elongation) and azimuth (polarization effects) → leads to rather complex predicted behaviour in angle dependencies

Tim Huege

17

AREINA

LOPES 10 Analysis : Distant Events Interplay of radio and shower particle analysis [1]Event1078760328-10101 Weak coherence! **Grande Event:** ence gth[_w/olt/m/MHz] **Φ = 302.18**° $\theta = 41.01^{\circ}$ 20 [8] [9] $\alpha = 57.91^{\circ}$ $X_c = -142.85 \text{ m}$ $Y_c = 40.27 \text{ m}$ lg(E/eV) = 17.73 ln(A) = 3.1685 m curvature = 3250 m m -2.2-2.1-2 -1.9-1.8-1.7 ln(A) = 3.16Time[µSeconds] [1]Event1078760328-10101 curvature = 3250 m= 4250 m **Coherence!** <u>[</u>] Improvement of 0 S - N direction -200 shower core and arrival direction estimate in Grande 600 by LOPES ! -6000 -400-200W - E direction -2.2-2.1 -1.8 -1.7 -1.9-2 Time[µSeconds]

June 2006

Andreas Haungs – LOPES Collaborations

LOPES 10 Analysis : Results energy dependence of radio signal

Signal dependencies from shower parameters in respect of Allan's idea: $\epsilon_v = 20 \cdot (E / 10^{17} eV) \cdot \sin \alpha \cdot \cos \theta \cdot exp(-R / R_0(v,\theta))$

[µV / m MHz]

Radio signal (electric field) scales with primary energy:

$$\varepsilon_v \sim E_0$$

➔ Power of electric field scales approx. quadratically with primary energy !

Apel et al. – LOPES collaboration, Astrop.Phys. (2006) submitted

LOPES 10 Analysis : Results energy dependence of radio signal

Signal dependencies from shower parameters in respect of Allan's idea: $\epsilon_v = 20 \cdot (E / 10^{17} eV) \cdot \sin \alpha \cdot \cos \theta \cdot \exp(-R / R_0(v,\theta))$ [$\mu V / m MHz$]

Radio signal (electric field) scales with primary energy: $\epsilon_{v} \sim E_{0}$

➔ Power of electric field scales approx. quadratically with primary energy !

LOPES 10 Analysis : Results signal dependency vs. simulations

Tim Huege, 29th ICRC, Pune, 2005

LOPES 10 Analysis : Results lateral profile of radio signal

Signal dependencies from shower parameters in respect of Allan's idea: $\epsilon_{\nu} = 20 \cdot (E / 10^{17} eV) \cdot \sin \alpha \cdot \cos \theta \cdot \exp(-R / R_0(\nu, \theta))$ [$\mu V / m MHz$]

Radio signal scales with core distance: $\varepsilon_{v} \sim exp(-R/R_{0})$

Apel et al. – LOPES collaboration, Astrop.Phys. (2006) submitted

22

Andreas Haungs – LOPES Collaborations

LOPES 10 Analysis : Results lateral profile vs. simulations

Tim Huege, 29th ICRC, Pune, 2005

60° 450 70°

300

150

June 2006

LOPES 10 Analysis : distant events efficiency

Apel et al. – LOPES collaboration, Astrop.Phys. (2006) submitted

LOPES 10: Analysis of inclined events

Event:

 $\begin{array}{ll} \overline{\Phi} = 74, 4^{\circ} & \theta = 68^{\circ} \\ \text{core = outside} \\ \text{lg}(N_{e}) \sim 6 ? & \text{lg}(N_{\mu}) \sim 5.7 ? \\ \text{but clear radio signal } !! \end{array}$

-reconstruction of showerby particle detectors difficult-clear radio signals seen

e/γ-detector, run 005065 event 0202928

Petrovic et al. – LOPES collaboration, 29th ICRC, Pune, 2005

LOPES 10 Analysis : Results inclined events vs. simulations

inclined showers → larger lever arm to geomagnetic angle

no radio events from east or west?

north-south asymmetry in radio events?

Monte Carlo Simulations:

east-west ←→ north-south asymmetries expected due to polarization, antenna gain and geomagnetic effects

first measurements consistent with simulation but difficult situation

June 2006

Andreas Haungs - LOPES Collaborations

LOPES 30: Extension: 30 antennas at KASCADE-Grande

•30 antennas at KASCADE-Grande •Maximum baseline: ~300 m •Trigger: KASCADE <u>and</u> KASCADE-Grande •Absolute Calibration •Environmental monitoring

LOPES 30: absolute calibration

 amplification factor V per antenna obtained with external commercial calibrated reference antenna

 correction factor dependent on antenna frequency weather conditions angle measured power $P_{\rm DAQ}(v)$ of each antenna compared with received power $P_{\rm rec}(v)\,$ from reference radio source

AREN

LOPES 30: absolute Calibration

June 2006

Andreas Haungs – LOPES Collaborations

LOPES 30: absolute Calibration

- crosscheck: Lab measurements
- systematic analysis of all LOPES-electronic components
- amplitude and phase measurements to determine system response
- LNA, coaxial cable, Front-end, Sample unit

June 2006

Andreas Haungs – LOPES Collaborations

LOPES 30: environmental monitoring

Correlations with signal and noise level of:

- humidity
- temperature
- pressure
- electric field
- rain fall

-

Electric Field Mill:

Isar, Nehls et al. – LOPES collaboration, ARENA 2006 poster

June 2006

Andreas Haungs – LOPES Collaborations

LOPES 30: first events

Event:

 $\begin{array}{l} \Phi = 15^{\circ} \ \ \theta = 306^{\circ} \\ \text{core} = \text{in KASCADE} \\ \text{Ig}(\text{N}_{e}) \sim 7.4 \quad \text{Ig}(\text{N}_{\mu}) \sim 6.0 \\ \text{E}_{0} \sim 1.6 \cdot 10^{17} \ \text{eV} \end{array}$

-1.1

30 individual antenna

June 2006

- several beam formings possible
- radio reconstruction inclusive calibration factors of antennas

-10

Field Strength [µV/m/MHz]

10

Isar, Nehls et al. – LOPES collaboration, ARENA 2006 poster

Time [µs]

-0.9

-1.

Andreas Haungs – LOPES Collaborations

LOPES^{STAR}: large scale application?

- radio technique has great potential for large scale application:
 - LOFAR will measure CRs
 - R&D for use in the Pierre Auger Observatory has started
- LOPES continues to contribute experience and physics results
- application in Auger needs a different detector concept:
 - LOPES develops LOPES^{STAR}
 - self-triggered by radio signals only
 - low power consumption
 - decentralized array organization

Andreas Haungs - LOPES Collaborations

-crossed logarithmic-periodic dipole antenna (crossed LPDA) -dual channel low noise, low power amplifier (0,022 W/Channel) -RF mainboard with BIAS-T, 32nd order RF- bandpass filter, limiter, amplifier, envelope rectifier

- ADC and circular buffer (80 Mhz sampling rate)
- basic (self)trigger setup by enveloping

Krömer et al. – LOPES collaboration, SPIE 2005

LOPES^{STAR}: test station at Auger Observatory

- close to Balloon Launching Station
- flexible setup
- define hardware and measure background
- test trigger system
- test hardware
- installation in 2006
- ask for additional tank

LOPES 10

- continuation data analysis

LOPES 30

- continuation absolute calibration LOPES 30
- monitoring environmental conditions
- continuation data taking LOPES 30
- analysis of LOPES 30 data
- polarisation measurements
- comparison with simulations
- **Simulations**
 - inclusion in CORSIKA
- **LOPES**^{STAR}
 - data taking in Karlsruhe
 - tests and improvements in hard- and software
 - test setup in Argentina

Summary : LOPES

- Successful cooperation of Radioastronomy and Astroparticle Physics groups
- LOPES 10:
 - → Large Sample of radio detected showers
 - → Detailed analyses of central events, distant events, inclined showers, thunderstorm events
- →Proof of Principle

• LOPES 30

- ➔ absolute calibrated, higher energies, longer maximum baseline
- → direct comparison of simulations with measurements

Precision measurements for energies up to 10¹⁸eV
 LOPES^{STAR}

→autonomous system, self-trigger system, test facility for Auger application

→Optimization for large scale application

→LOPES will calibrate the radio signal in EAS (with all the dependencies on cosmic ray parameters)

June 2006

LOPES Collaboration

ASTRON, Dwingeloo, The Netherlan	ds Departme	nt of Astrophysics, Nijmegen	National Institute	e of Physics and Nuclear Engineering
L. Banren H. Butche	Ine Nethe	erlands	Bucharest, Roma	ania
G. de Bruyn C.M. de V	Vos S. Buitink	A. Horneffer		
H. Falcke G.W. Kar	J. Kuijpers	S S. Lafebre	A. Bercuci	I.M. Brancus
Y. Koopman H.J. Pepr	A. Nigl	J. Petrovic	B. Mitrica	M. Petcu
G. Schoonderbeek W. van C	apellen K. Singh		O. Sima	G. Toma
S. Wijnholds				
			Institut für Kerr	nphysik,
Universität Wuppertal Germany			Forschungszei	ntrum Karlsruhe, Germany
R Glasstetter K H Karr	pert		W.D. Apel	A.F. Badea
L Rauthenberg			K. Bekk	J. Blümer
o. Rudifichiberg			H. Bozdog	F. Cossavella
			K. Daumiller	P. Doll
			R. Engel	A. Hakenjos
M Drüggeregen, Germany			A. Haungs	D. Heck
M. Bruggemann P. Buchn			T. Huege	P.G. Isar
C. Grupen Y. Kolota			H.J. Mathes	H.J. Maver
S. Over vv. vvaiko			C. Meurer	J. Milke
D. Zimmermann			S. Nehls	R. Obenland
				er S. Ostapchenko
Max-Planck-Institut für Radio-				S Plewnia
astronomie Bonn Germany			H Rebel	M Roth
<u>astronomic, Bonn, Cernary</u>			H Schieler	H Ulrich
P Biermann A Zens				A Weindl
T.L. Diemann 5.A. Zens			J. Wochele	A. Weindi
		A R		
/		COM CREMIE	Institut für Proze	essdatenver-
Internancearia Torina Italy			arbeitung und E	lektronik, FZK, Germany
RI Chie			T. Asch	H. Gemmeke
C.C. Trinchoro			O. Krömer	
G.C. Trinchero				
	Dipartiment	to di Fisica Generale	Institut für Exper	rimentelle Kernphysik Universität
Soltan Institute for Nuclear Studies.	dell'Universit	sita, Torino, Italy	Karlsruhe, Germ	nany
Lodz, Poland	M. Bertaina	A. Chiavassa	E. Bettini	M. Deutsch
P. Luczak A. Risse	F. di Pierro	G. Navarra	A. Hakenjos	J.R. Hörandel
J. Zabierowski			M. Stümpert	

