Measurement of Attenuation Length for Radio Wave in Natural Rock Salt and Performance of Detecting Ultra High-Energy Neutrinos

M.Chiba, M.Fujii, T.Kamijo, Y.Shibasaki, Y.Takayama, F.Yabuki, O.Yasusda, A.Amano*, Y.Chikashige*, T.Kon*, S.Mori*, S.Ninomiya*, Y.Shimizu*, Y.Takeoka*, M.Utsumi**, Y.Watanabe*** Tokyo Metropolitan University, Seikei University*, Tokai University**, NAO***

Talk at ARENA2006 – June 28, 2006

UHE Neutrinos Originate in UHE Cosmic Rays & CMB

Cosmic ray energy spectrum Akeno E^{-2.7} Akeno AGASA 10⁰ HiRes (m⁻²sr⁻¹s⁻¹) E-3 10⁻⁵ **dN/dE** 10¹⁸ 10²⁰ 10⁻¹⁰ ш Fixed target 10⁻¹⁵ -RHICTEVATRON LHC 10¹⁰ 10^{12} 10¹⁴ 10^{16} 10^{18} 10^{20} F (eV / nucleus)

• Observed highest energy exceeds 10²⁰eV

- Cosmic microwave background exists.
 - Greisen-Zatsepin-Kuzmin(GZK) effect.
 - The energy exceeds Δ production threshold.

• GZK neutrinos (10¹⁹eV) flux is as low as 1 [/km²/day].

Need a huge mass of detection medium

Chrenkov Radiation Energy Optical vs. Radio Wave Region

Salt Neutrino Detector Installed in a Salt Dome

- Rock salt is free from liquid and gas permeation : petroleum or natural gas are likely to deposit around a salt dome.
- 2. Free from water permeation leads good radio wave transparency in a salt dome.
- 3. Covered soil prevents surface 10 radio wave to penetrate.
- 4. Conceivable background is black body radiation in salt dome.

Attenuation Length: Cavity Perturbation Method

Complex permittivity

$$\varepsilon' = 1 - \frac{1}{\alpha_{\varepsilon}} \frac{f - f_0}{f} \frac{V}{\Delta V} = n^2$$
$$\varepsilon'' = \frac{1}{2\alpha_{\varepsilon}} \left(\frac{1}{Q} - \frac{1}{Q_0}\right) \frac{V}{\Delta V}$$
$$\tan \delta = \frac{\varepsilon''}{\varepsilon'} \qquad \varepsilon = \varepsilon' - j\varepsilon'' = \varepsilon'(1 - j\tan\delta)$$

f₀: center frequency in empty f: center frequency with sample Q₀: empty Q: with sample V: volume of sample <<V V : volume of cavity =1.855 (TM010) n: refractive index Attenuation length: $L_{\alpha} = \frac{\lambda}{\pi \sqrt{\varepsilon'}}$ tan

0.3GHz Cavity with Closed Insertion Hole

Synthetic Rock Salt : Preliminary

Hockley Rock Salt (Texas): Preliminary

Attenuation Length of Hockley Rock Salt at 0.3GHz L/m=237 \pm 139 for 28, 29 and 10 \times 11mm samples

Attenuation Length of Hockley Rock Salt at 1GHz $L/m=490 \pm 238$ for 6×6 , 9mm samples

Asse Rock Salt (Germany): Preliminary

Two types of Frequency Dependence (Preliminary)

Attenuation Length of Rock Salt (0.3 and 1GHz)

Attenuation Length of Rock Salt (Preliminary)

SND Simulation: EM Shower Simulation in 1D

R: Distance from origin of a shower to observer

r: position of charge, ω : frequency of radiation

n: refractive index, θ : angle between shower and observer

1D structure function of excess electrons

- Geant4.5.2. is used for space distribution of excess electrons (E_{shower}=10¹⁵-10¹⁶ eV).
- Modified Greisen parameterization is used to fit Geant4 shown as the solid line.
- α , β , γ are determined from 10¹⁵-10¹⁶ eV Geant4.
- Geant4 includes LPM effect in bremsstrahlung at E>10¹⁵ eV.

$$N = \frac{0.31 \times 0.26}{\sqrt{\alpha}} \exp\left[\beta t \left(1 - \gamma \times \ln\left\{\frac{3 \times \beta t}{\beta t + 2\alpha}\right\}\right)\right]$$

$$\alpha = \ln\left[\frac{\text{Energy}}{(44.686 \times (E+1)^{E} - 34.9092) \times 10^{4} \times \epsilon}\right]$$

$$E = \log_{10}\left(\frac{\text{Energy}}{10^{15} \text{ eV}}\right)$$

$$B = 0.15 - 0.021 \times \ln(\text{Energy})$$

$$\alpha = 5.1 - 0.11 \times \ln(\text{Energy})$$

$$\epsilon: \text{ Critical Energy}$$

$$M.Chiba \text{ ARENA2006}$$

$$B = 0.15 - 0.021 \times \ln(\text{Energy})$$

$$B = 0.015 - 0.021 \times \ln(\text{Energy})$$

Angular and Frequency Distribution of Electric Field 1Dimensional structure function vs. Geant4

•1D Angular distribution shows clear interference pattern due to high statistics. 1D envelope in angular distribution is consistent with Geant4.

•Frequency distribution: Geant4 is normalized to SLAC experiment at 2GHz. 1D model becomes close to Geant4 under 1GHz to be used.

M.Chiba_ARENA2006

Conditions of SND Simulation

Black body radiation

•Effective volume: 3 × 3 × 3[km³]

•Att. Length: Asse with freq. dep.

Hit Antennas

E field at antenna > 6.9 × 10⁻⁶[V/m] (Black body radiation)

Red: Antennas

Blue: Hit antennas

Summary

- Long attenuation length is found at Asse and Hockley rock salt. There are two types of frequency dependences of the attenuation length. One is consistent with a hypothesis as tanδ being constant with frequency and the other is not.
- Structure function of 1D excess electron in a EM shower afford to get EM field@E >10¹⁸ eV.
- Simulation is done taking into realistic attenuation length of natural rock salt, black body radiation, receiver band width.
- Computer times are 1D (5 min) and Geant4 (10 days)@10¹⁶eV.
- GZK neutrinos will be detected
 8 ~ 62 event/year.
 M.Chiba ARENA2006

1GHz Cavity Resonator with Closed Insertion Hole

Input port The most difficult task is to make a good shape of rock salt samples. Shorter sample is easy to shape.

Sample insertion holder

0.2GHz cavity under construction

1124 × 100 mm, Aluminum, Q will be 8,000.

