Status of the South Pole Acoustic Test Setup

Sebastian Böser

sboeser@ifh.de

for the SPATS group: S.Böser, C. Bohm, F. Descamps, J. Fischer, A. Hallgren, R. Heller, S. Hundertmark, K. Krieger, R. Nahnhauer, M. Pohl, B. Price, K. Sulanke, J. Vandenbroucke,

ARENA Workshop

Newcastle, June 2006

Outline

Motivation

- acoustic neutrino detection
- ice properties
- hybrid optical/radio/acoustic simulation

The SPATS project

- general setup
- in-ice devices
- data acquisition system
- communication

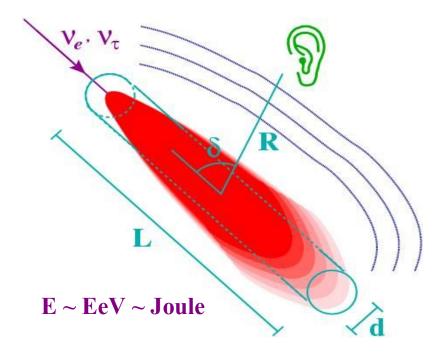
System testing

- summary
- Zeuthen Test Setup

Summary

Motivation

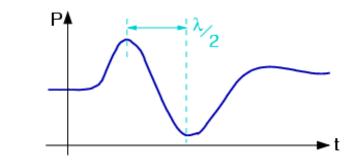
UHE neutrinos:


- many models (AGN, GZK, Z-Burst, TD,...)
- → low fluxes
 - large detector volumes
 (> 10km³)
 - ➔ natural dense media (water, salt, ice)
 - ➔ new detection methods (radio, acoustic)

Sr-1 10¹⁰ م GLUE'04 RICE'03 2-m ANITA-lite Fly's Eye [eV 108 1 I I I I I ŝ 10^{6} lets defects osmogenic 10^{4} 1 11111 1 11111 1 1 1100 יווייים אווייים 1018 1020 1022 1024 10^{26} E [eV] radio acoustic ~ 10 ~ 1

In-ice detection methods:opticalradioacousticAbsorption length [km] ~ 0.1 ~ 1 ~ 10 Directivity $1/r^2$ 1/r1/rEnergy threshold [eV] $\sim 10^9$ $\sim 10^{15}$ $\sim 10^{18}$

Methods are complementary → hybrid approach


Acoustic detection

Acoustic signal:

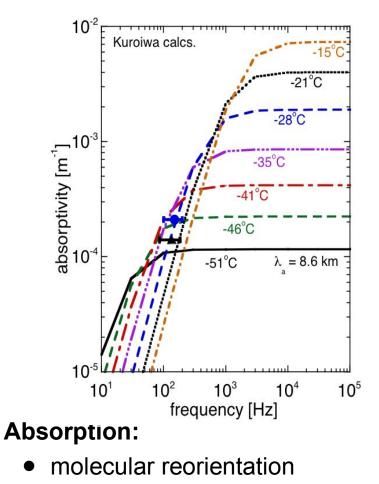
 $P_{max} = \left(\frac{\alpha}{\mathbf{C}_p}\right) \left(\frac{\mathbf{f}^2}{2}\right) \cdot \frac{E}{R} \cdot \frac{\sin x}{x}$

with $x = \frac{\pi \mathbf{L}}{2\mathbf{d}} \sin \delta$ and $f = \frac{\mathbf{v}_s}{2\mathbf{d}}$

Characteristic signal:

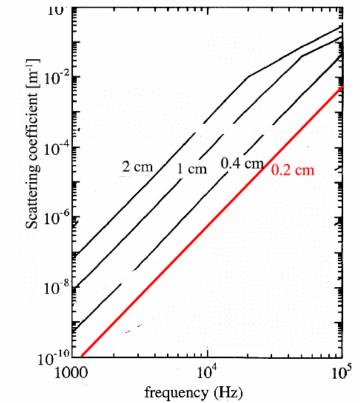
➔ good for background suppression

Peak pressure amplitude:


P_{max}

$$\left[{\rm Pa} \frac{{\rm E} [{\rm PeV}]}{{\rm R} [{\rm m}]} \right]$$

Water (20 °C)Ice (-50 °C) $0.22 \cdot 10^{-3}$ $2.2 \cdot 10^{-3}$

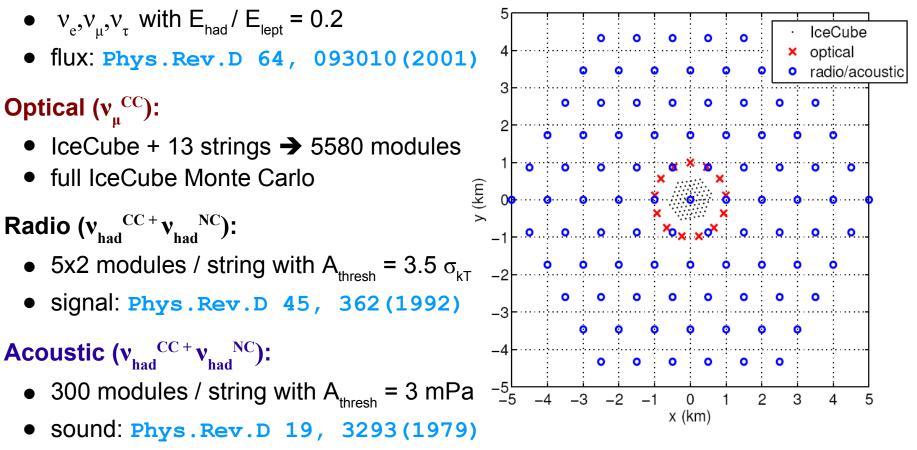

Ice properties

B. Price, UC Berkeley

➔ energy loss in relaxation

→ λ_{abs} (-51 ° C) ≈ 8.6 km

Scattering:


- Rayleigh on crystal boundaries
- → λ_{s} (10 kHz) ≈ 800 km
- → λ_{s} (100 kHz) ≈ 0.2 km

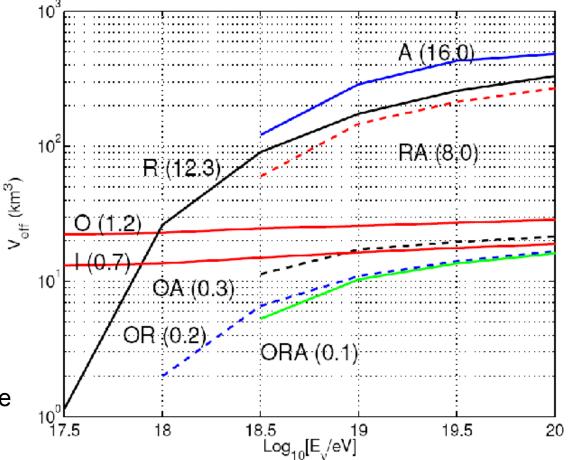
Hybrid optical/radio/acoustic simulation

D. Besson et al.

Common neutrino sample:

10¹⁶-10²⁰ eV from 2π in ~1000 km³

analytic propagation


Hybrid optical/radio/acoustic simulation II

Results:

- total:
 - ~ 20 events / year
- radio/acoustic:
 - > 10 events / year
- optical:
 - ~ 1 event / year

Coincident events:

- radio/acoustic:
 - ~ 8 events/year
- ➔ cross calibration possible

Published in Proc. of 29th ICRC (Pune, 2005), astro-ph/0512604

Simulation uncertainties

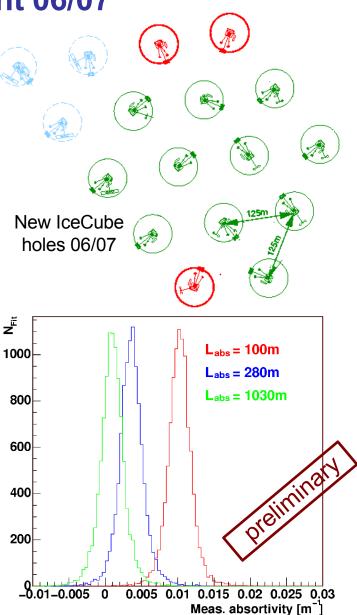
	theoretically	experimentally
Event rates:neutrino fluxcross section	models extrapolation	ల - ల - ల angular spectum
Signal generation:shower developmentacoustic pulse	no exp. + CPU power energy deposit	signal shape verified at protonbeam
Signal propagation:speed of soundabsorptionscattering	other frequencies extrapolation extrapolation	missing missing missing
Detector simulation:self noiseambient noise	model unknown	measured missing
Need a dedicated setup to measure ice parameters !!!		

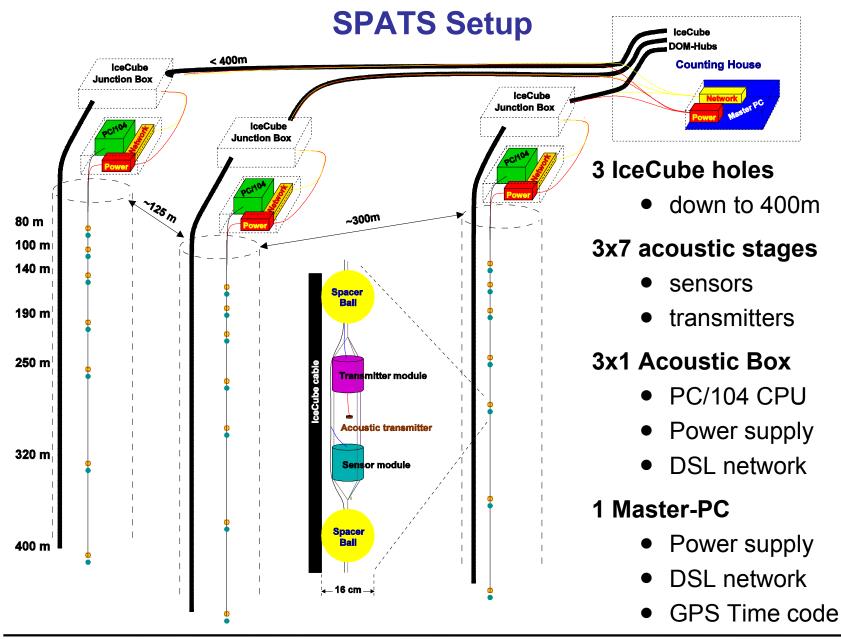
Absorption measurement 06/07

Holes:

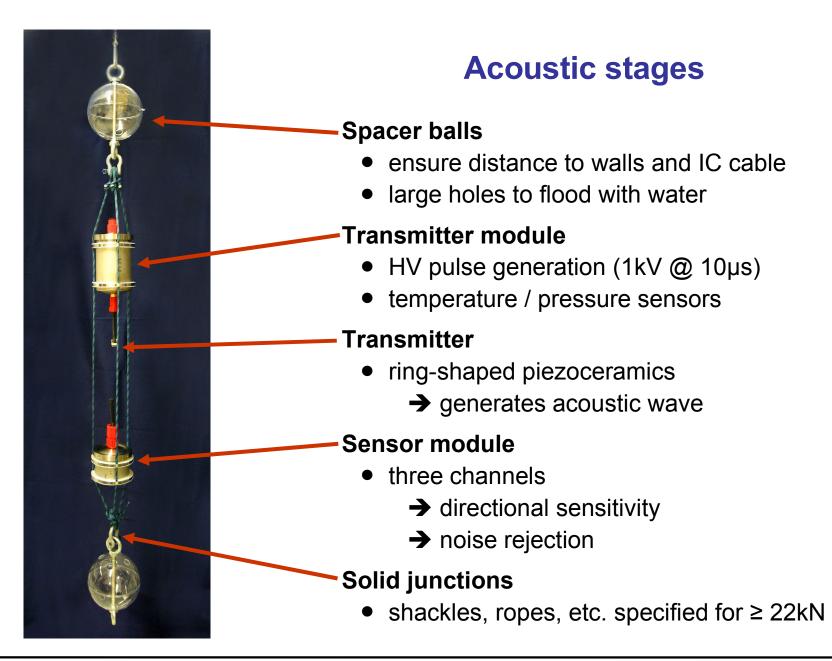
In drilling expensive → bound to IceCube holes

Absorption measurement: $A(S_i, T_j) = S_i T_j 1/d_{ij} e^{-\alpha d_{ij}}$


- small effect → maximize distance
- no in-ice calibration
 - → use redundant information e.g.
 - all three sensor transmitter combinations


 $\mathbf{A}(\mathbf{S}_{i},\mathbf{T}_{j})/\mathbf{A}(\mathbf{S}_{i},\mathbf{T}_{k}) = \mathbf{T}_{j}/\mathbf{T}_{k} \mathbf{d}_{jk}/\mathbf{d}_{ij} \mathbf{e}^{-\boldsymbol{\alpha}(\mathbf{d}_{ij}-\mathbf{d}_{ik})}$

- transmitter output ratio from water meas.
- $\mathbf{R} = \mathbf{T}_{i}/\mathbf{T}_{i} \pm \Delta \mathbf{R}_{syst} \rightarrow 6+3$ equations for 7 parameters
- AR_{syst} mostly azimuthal orientation (talk F. Descamps) → random
- → with a 50% chance for $<\Delta R_{syst} > = 10\%$


 $_{abs}$ > 1200m or better (3 σ C.L.)

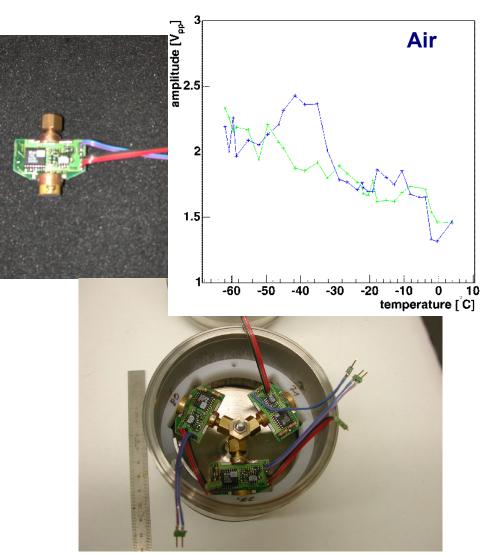
➔ need more sensors and transmitters

Sensor module

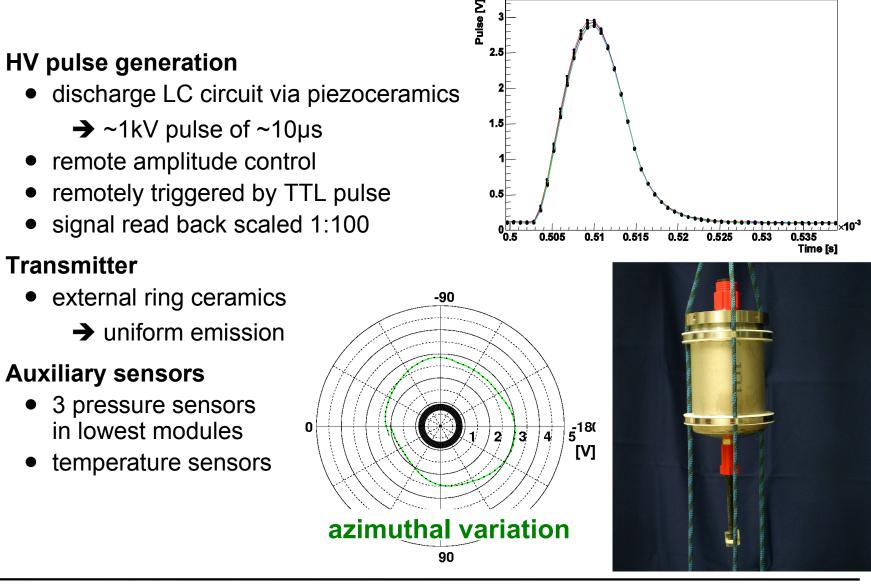
Piezo ceramics

• individually calibrated

Three-stage amplifier board


- low noise
- differential output

Mechanical contact


- Preload screw
 - ➔ signals get larger
 - at low temperature
 - at higher pressure

Sensor module

- three channels
- voltage conversion board 36-13VDC → ±5VDC

Transmitters

In-ice cable

Requirements

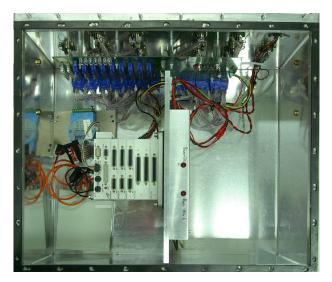
- ~ 200 kg load
- low loss @ 100kHz (analog signals)

Central support rope

- takes weight of string
- knots to connect acoustic stages

Electrical cables

- four twisted pairs per module
- common shield


Cablage

- two helical layers
- nom. diameter: 31.5 mm •

Connectors

• 10-pin SubConn underwater mateable

In-Ice cables and connectors are 50% of total cost !

String-PC

String electronis:

- in snow → -10 °C to -60 °C
- long cables → limited power

Acoustic box:

- DC-DC converter: 96V → 5V, 12V, 24V
- Communication: DSL Modem & RS422 serial
- Filter, fuses, cable drivers, etc..

PC/104 system:

- CPU module: 600MHz, 512 MB RAM
- 3 fast ADC boards: 1.25 MHz @ 12 bit
- 1 slow ADC board: temperature, pressure
- 1 relais board: power control
- → all components: +80°C to -40°C
- ➔ power consumption: 35W norm. , 55W max.

Master-PC

System control:

- interface to string electronics
- part of south pole network

Power supply:

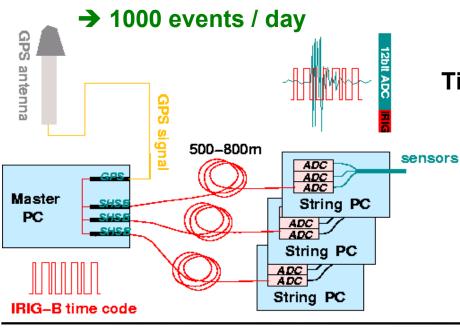

- 96V @ 150 W (standard IceCube)
- independent of PC

SPATS Hub Service Board

- Power and connection control
- Current and voltage limits
 FPGA controlled
- Signal routing

Communication:

- DSL Modems & RS422 serial
- GPS antenna
 - ➔ IRIG-B time synchronisation



Communication and time synchronisation

System control and data taking only from northern hemisphere !

Data rates:

- max. 152 Mbps (57.2 Mbps/string)
 → software trigger at string
- DSL Modem: 2.3 Mbps → to -20°C
- RS422 serial: 38.4 kbps → to -40°C
- Satellite: ~56kbps (all experiments)
 - → 1% ≈ 50MB / day for SPATS

Time synchronisation:

- GPS receiver
 - IRIG-B time code (TTL binary)
 - cable driver on SHSB
 - receiver in acoustic box
 - → ≈ 40µs jitter ≡ 15cm in ice
 - sampled together with ADC
 - → 0.8µs resolution

Testing summary

Modules:

- functionality and freezer test
- water calibration
 talk F. Descamps

String-PC:

- Comm. and DAQ tests
- Freezer tests

Communication:

- original long cables
- in freezer

Outdoor:

- Zeuthen lake and Abisko
 - → talk F. Descamps

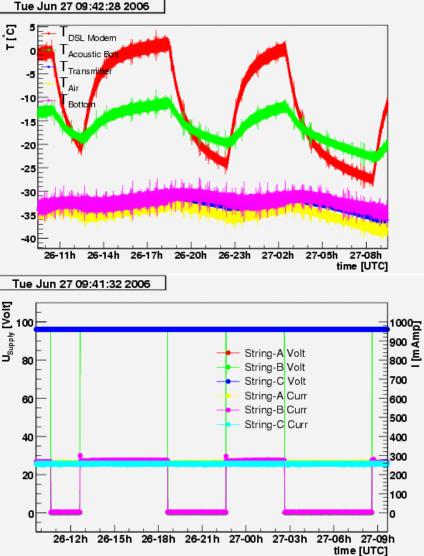
Full system:

- tested for 4 weeks in Zeuthen
 - ➔ now: Zeuthen Test Setup

South Pole Acoustic Test Setup – 19

sboeser@ifh.de

Zeuthen Test Setup


Aim:

- intensive long-term testing until deployment
- software development platform

Current setup:

- original Master-PC
- original surface cables and simulators
- original acoustic boxes
- original and short in-ice cables
- original modules

sboeser@ifh.de

Summary

Hybrid detector:

- \checkmark promising event rates possible
- \checkmark cross-calibration of radio and acoustic methods
- ✗ need ice parameters for more precise results

SPATS:

- remotely controllable many channel setup
 - ➔ overcome systematic errors
 - ➔ redundancy and background characterisation
- ✓ fully developed
- ✓ extensively tested

System is ready for deployment in next polar season !