PHY418 PARTICLE ASTROPHYSICS

Sources

Sill		No hydrogen			Hydrogen always present	
0111	No S	Si II		Light	curve	Narrow
	He	No He		Plateau	Linear	lines
la	lb	lc	llb	II-P	II-L	lln
hermo- nuclear			massive star	core collaps	se	
ll types of	suparpo	vae form	superpova r	empante (avnanding	shalls of

Conclusion: PWNe

 Pulsar wind nebulae are important sources of high energy photon emission in the Galaxy

• this emission is powered by the pulsar spin-down

- They can be associated with SNRs, but some are isolated pulsars with "bow shocks"
 - there are various ways in which a pulsar can be "kicked" out of its SNR (asymmetric explosion, asymmetric reverse shock)
 - also, the most famous PWN of all—the Crab—has no associated shell SNR despite not having moved much from observed SN
- The exact acceleration mechanism is disputed
 hence it is not obvious if PWNe accelerate ions, or just e⁺e⁻
- Note that e⁺ escaping from PWNe might account for the "positron excess" in cosmic rays

EXTRAGALACTIC SOURCES

Active galactic nuclei

	63
Summary You should read chapter 4 of the notes (in progress) You should know about • supernova remnants • pulsar wind nebulae • gamma-ray bursts • active galactic nuclei	 Explaining the observed cosmic ray spectrum requires both Galactic and extragalactic sources Galactic sources explain spectrum up to the "knee", extragalactic beyond this Supernova remnants strongly believed responsible for Galactic emission energetics OK, some observed spectra show evidence for π⁰ decay properties are consistent with diffusive shock acceleration Pulsar wind nebulae dominate high-energy photon emission—unclear whether these accelerate hadrons probably <i>not</i> DSA in this case: magnetic reconnection or (if only leptons) resonant cyclotron absorption Main extragalactic sources are GRBs and radio-loud AGN GRBs contain highly relativistic shocks Lack of detected neutrino emission not definitive yet but interesting Radio-loud AGN have relativistic bulk motion with shocks distributed X-ray emission suggests acceleration not all localised to shocks—Fermi 2nd order and/or magnetic reconnection may be relevant