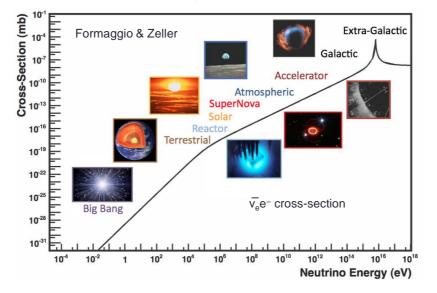
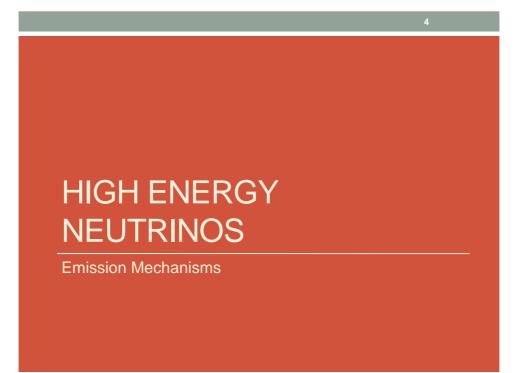

02/11/2014

PHY418 PARTICLE ASTROPHYSICS


High Energy Neutrinos


notes section 1.5

Neutrino astrophysics

Neutrino astrophysics

notes section 2.5.1

Charged pion decay

- If an object accelerates protons to high energies, we should get charged pion production via p + p → p + n + π⁺
 - (i.e. energetic proton hits ambient gas; as protons are more common than neutrons this reaction will be more common than $p+n \to p+p+\pi^-)$
 - π^+ then decays to μ^+v_{μ} (π^- to μ^-v_{μ})
 - other flavours of neutrino will be produced in flight by neutrino oscillation
- This is essentially the same mechanism that produces high-energy γ-rays from π⁰ decay
 - any source that is known (from its spectrum) to produce π⁰ decay photons is *guaranteed* to be a neutrino source (but possibly not a *detectable* neutrino source, because of the low cross-section)

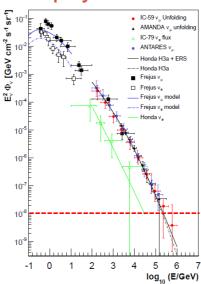
Waxman-Bahcall bound

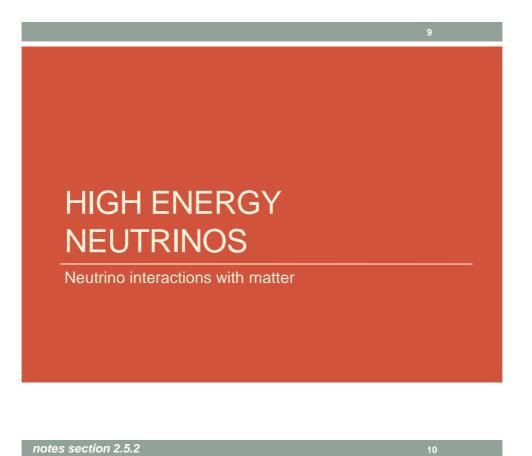
- We know the spectrum of high-energy cosmic rays, and pγ interactions with ambient radiation—e.g. CMB photons must occur and also produce pions, mainly via the Δ resonance
 - therefore we can calculate the expected neutrino flux from this source
 - this is the *Waxman-Bahcall bound*
- Assume an energy spectrum $\propto E^{-2}$
 - then energy production rate in CRs between E_p and E_p + d E_p is

$$\dot{\mathcal{E}}(E_{\rm p})\mathrm{d}E_{\rm p} = \dot{N}_{\rm p}(E_{\rm p}) \times E_{\rm p}\mathrm{d}E_{\rm p} = \frac{N_0}{E_{\rm p}}\mathrm{d}E_{\rm p}$$

- Integrate this between 10^{19} and 10^{21} eV, substitute in measured CR energy flux of 5×10^{37} J Mpc^-3 yr^-1
- solve for \dot{N}_0 to get ~10³⁷ J Mpc⁻³ yr⁻¹

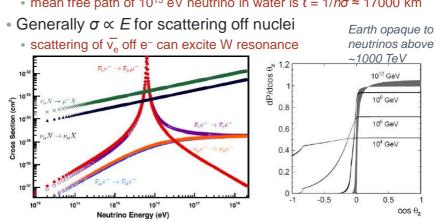
Waxman-Bahcall bound

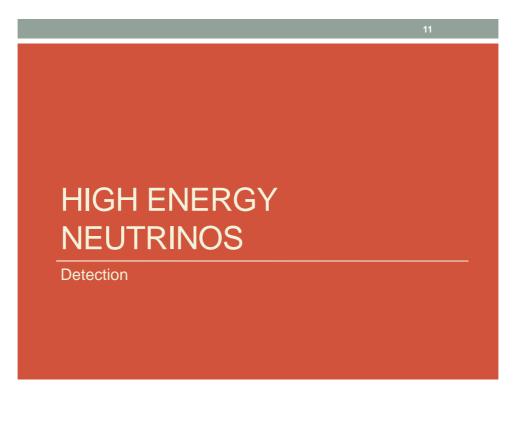

- Now suppose that each proton loses some fraction η of its energy in pion production before it escapes from the source
 - roughly ¼ of that goes into neutrinos
 - · resulting neutrino energy density is


$$E_{\nu}^2 \frac{\mathrm{d}N_{\nu}}{\mathrm{d}E_{\nu}} \simeq \frac{1}{4} \xi_z \eta t_\mathrm{H} E_\mathrm{p}^2 \frac{\mathrm{d}N_\mathrm{p}}{\mathrm{d}E_\mathrm{p}}$$

- $t_{\rm H}$ is the Hubble time, ξ_z is an evolution factor which is probably of order 3 or so (to allow for more cosmic ray production in earlier epochs because of more massive stars and AGN)
- convert from energy density to flux by multiplying by c/4π (volume of neutrinos crossing unit area in unit time is c; divide by 4π to get flux per unit solid angle)
- putting in numbers we get $E_{\nu}^2 \Phi_{\nu_{\mu}} \simeq \xi_z \eta \times 10^4 \text{ GeV m}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

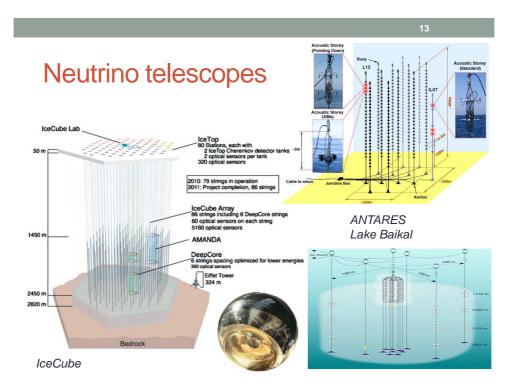
High-energy neutrino astrophysics

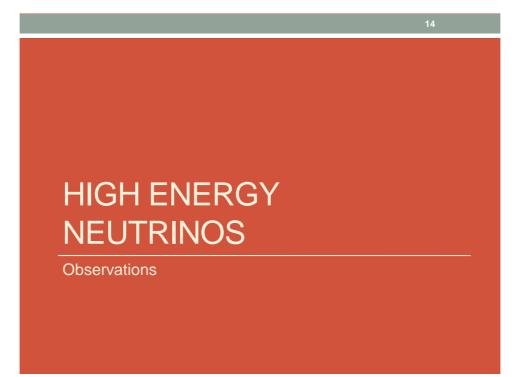

- Neutrino telescopes are capable of reaching Waxman-Bahcall bound
 - problem is that there is an irreducible background of neutrinos from CR interactions in our atmosphere— "atmospheric neutrinos"
- Neutrinos from astrophysical sources are identifiable only at extremely high energies, above about 100 TeV
 - therefore the expected fluxes are extremely low



Neutrino interactions with matter

- Neutrinos are weakly interacting
 - this makes them difficult to detect
 - mean free path of 10^{15} eV neutrino in water is $\ell = 1/n\sigma \approx 17000$ km

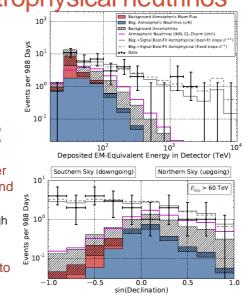



notes section 2.5.3

2

Detection of high-energy neutrinos

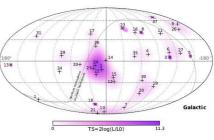
- Neutrino interacts by either W exchange or Z exchange
 - W exchange produces charged lepton, which you detect
 - Z exchange at sufficiently high momentum transfer may cause hadronic shower (break-up of struck nucleon) which you also detect
- Detection is normally by Cherenkov radiation in water (liquid water or ice)
 - for ultra-high-energy neutrinos use natural bodies of water/ice to get large effective volumes
 - Lake Baikal, Mediterranean Sea (ANTARES), South Pole (IceCube)
- Muons will leave track, electrons will shower
 - fairly good direction resolution (tenths of a degree) for v_µ, but poor for v_e; v_τ OK if τ decay is seen ("double bang" event)



5

Observation of astrophysical neutrinos

- In 3 years of data taking IceCube has detected 37 events above 30 TeV deposited energy
 - background estimates are 8.4±4.2 CR muons and 6.6^{+5.9}_{-1.6} atmospheric neutrinos
 - the excess events are at higher energy than the background and are downgoing
 - high-energy neutrinos have high enough cross-section to be absorbed by the Earth
 - signal significance >5σ owing to difference in distribution



Observation of astrophysical neutrinos

Derived flux is consistent with Waxman-Bahcall bound

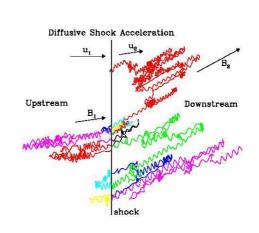
 spectral index somewhat larger 	Parameter	Best-fit value	No. of events
	Penetrating μ flux	$1.73\pm0.40\Phi_{\rm Sibyll+dpmjet}$	
	Conventional ν flux	$0.97^{+0.10}_{-0.03} \Phi_{ m HKKMS}$	280^{+28}_{-8}
than naïve	Prompt ν flux	$< 1.52 \Phi_{\rm ERS} \ (90\% \ {\rm CL})$	< 23
expectation of 2	Astrophysical Φ_0	$2.06^{+0.35}_{-0.26} \times 10^{-18}$	
 but this is true 		${\rm GeV}^{-1}{\rm cm}^{-2}{\rm sr}^{-1}{\rm s}^{-1}$	87^{+14}_{-10}
of CR spectra too	Astrophysical γ	-2.46 ± 0.12	
•	<i>8</i>	IceCube arXiv:1410.1749 (astro-ph.HE)	
 No clear point sou 	rces		

- most significant cluster is near Galactic centre, but it is not statistically significant and is not confirmed by ANTARES
- no correlation with Galactic plane
- Need more data!

Summary

You should read section 2.5 of the notes.

You should know about


- π⁺ decay
 the Waxman-
- Bahcall bound
- neutrino telescopes
- IceCube results

- High-energy astrophysical neutrinos are produced by π[±] decay
 - the pions come from CR proton interactions
- As neutrinos interact extremely weakly, very large detectors are required
 - natural bodies of water/ice instrumented with PMTs to detect Cherenkov radiation from produced leptons or hadronic showers
- The main background is atmospheric neutrinos also produced by CR interactions
 - penetrating CR muons also contribute
- There is a signal (from IceCube) but as yet no identified point sources

Next: acceleration mechanisms

- · Fermi second-order
- diffusive shock acceleration
- acceleration by relativistic shocks
- acceleration by magnetic reconnection
- propagation through Galaxy

Notes chapter 3

