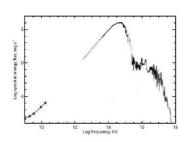
PHY418 PARTICLE ASTROPHYSICS

Radio Emission

2

Radio emission and particle astrophysics

Why are the lowest-energy photons relevant to high-energy particle astrophysics? Because thermal radiation from stars is not significant in the radio waveband—bright radio emission is mostly **non-thermal** and diagnostic of high-energy particles.



http://www.cv.nrao.edu/course/astr534/Tour.html

RADIO EMISSION

Emission Mechanisms

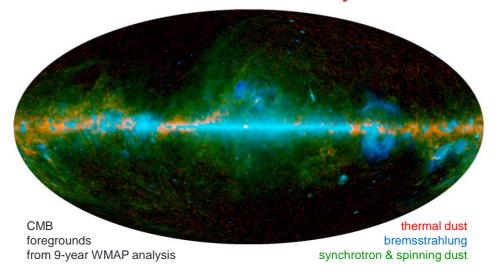
notes section 2.3.2

Radio emission mechanisms

- thermal emission from Galactic dust at 10-30 K
 - · mostly far infra-red and submillimetre
- thermal emission from the CMB
 - submillimetre and microwave
- "spinning dust"
 - 5-30 mm, from very small, rapidly-spinning dust grains (important as foreground to CMB emission)
- line emission from gas
 - 21 cm (H I) plus many molecular lines
- bremsstrahlung
 - "braking radiation" from electron-ion interactions
- synchrotron radiation
 - · from relativistic electrons in magnetic fields

these are of interest to us

Radio emission from Galaxy

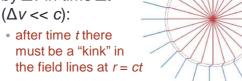


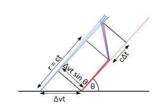
RADIO EMISSION

Emission from an accelerated charge

Radiation from an accelerated charge

 If charge accelerates by Δv in time Δt





- · beyond this the field does not "know" about the acceleration
- Neglect aberration and assume field lines on either side of kink are radial
 - then the azimuthal field is given by $\frac{E_{\theta}}{E_{r}} = \frac{\Delta v t \sin \theta}{c \Delta t}$

• so
$$E_{\theta} = \frac{Q \sin \theta}{4\pi\epsilon_0 c^2 r} \frac{\Delta v}{\Delta t}$$

Power emitted

- Poynting vector $\mathbf{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B}$
 - for an electromagnetic wave in free space E/B = c and **E** is perpendicular to **B**, so $S = E^2/c\mu_0 = c\varepsilon_0 E^2$
 - substitute for E from previous slide: then power through solid angle $d\Omega$ at angle θ is

$$P(\theta)d\Omega = \frac{Q^2|\ddot{\mathbf{r}}|^2\sin^2\theta}{16\pi^2\epsilon_0c^3r^2}\,r^2d\Omega$$

• and we can integrate this over solid angle to get total power $P_{\rm rad} = \frac{Q^2 |\ddot{\bf r}|^2}{6\pi\epsilon_0 c^3}$

$$P_{\rm rad} = \frac{Q^2 |\ddot{\mathbf{r}}|^2}{6\pi\epsilon_0 c^3}$$

- ullet this is Lorentz invariant but $\ddot{\mathbf{r}}$ is measured in the instantaneous rest frame of the particle (proper acceleration)
- in lab frame $|\ddot{\mathbf{r}}|^2 = \gamma^4 (a_\perp^2 + \gamma^2 a_\parallel^2)$ ($_\perp$ and $_\parallel$ relative to $_$)

RADIO EMISSION

Bremsstrahlung

notes section 2.3.4, 2.3.6

10

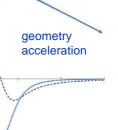
Bremsstrahlung

 Radiation emitted when an electron is deflected by the electric field of an ion

 also known as free-free emission since the electron is not bound to the ion either before or after the scattering

• For *radio frequencies* $\omega \tau <<$ 1 where $\tau = 2b/\gamma v$

- can neglect parallel acceleration since positive and negative cancel
- can treat perpendicular acceleration as delta function with area Δv_{\perp}
- Fourier transform of a delta function is a constant
 - therefore Fourier transform of a_{\perp} is $A_{\perp}(\omega) \approx \Delta v_{\perp}/(2\pi)^{1/2}$



Bremsstrahlung

For a single electron

$$\Delta v_{\perp} = \frac{Ze^2}{4\pi\epsilon_0 m_e} \int_{-\infty}^{+\infty} \frac{\gamma b dt}{(b^2 + (\gamma vt)^2)^{3/2}} = \frac{2Ze^2}{4\pi\epsilon_0 m_e vb}$$

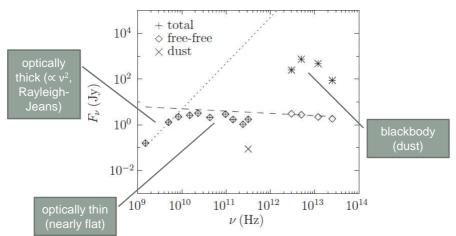
so

$$I(\omega) = \frac{e^2}{3\pi\epsilon_0 c^3} |A(\omega)|^2 = \frac{Z^2 e^6}{24\pi^4 \epsilon_0^3 c^3 m_e^2 v^2 b^2}$$

- therefore spectrum of bremsstrahlung is flat at low frequencies, $\omega < \gamma v/b$ (at higher frequencies it falls off exponentially)
- Integrating this over a range of impact parameters b still gives a flat spectrum $\propto \ln(b_{\rm max}/b_{\rm min})$ where $b_{\rm max}$ and $b_{\rm min}$ are inferred from the physics
- Integrating over a distribution of electron energies gives a flat spectrum for thermal, a power law for relativistic electrons

12

Typical bremsstrahlung spectrum



Spectral energy distribution of a compact HII region

RADIO EMISSION

Synchrotron radiation

notes section 2 3 5 2 3 6

14

Synchrotron radiation

 Synchrotron radiation is emitted when a particle moves in a magnetic field

a magnetic field
$$\frac{\mathrm{d}(\gamma m_0 \mathbf{v})}{\mathrm{d}t} = Ze(\mathbf{v} \times \mathbf{B})$$

$$\Rightarrow \gamma m_0 a_\perp = Zev_\perp B$$

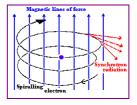
• particle moves in a spiral path with pitch angle given by $\tan \theta = v_{\perp}/v_{\parallel}$ and radius

$$r_g = \frac{\gamma m_0 v \sin \theta}{ZeB}$$

· total energy loss is

$$-\frac{dE}{dt} = \frac{Z^4 e^4 B^2}{6\pi\epsilon_0 c} \frac{v^2}{c^2} \frac{\gamma^2}{m_0^2} \sin^2 \theta$$

• note that as $\gamma=E/m_0c^2$ this is $\propto m_0^{-4}$: this is why we can neglect all particles other than electrons



Synchrotron radiation

• This can be written

$$-\frac{\mathrm{d}E}{\mathrm{d}t} = 2c\sigma_{\mathrm{T}}U_{\mathrm{mag}}\beta^{2}\gamma^{2}\sin^{2}\theta$$

where the Thomson cross-section

$$\sigma_{\rm T} = \frac{e^4}{6\pi\epsilon_0^2 c^4 m_e^2}$$

- and the energy density of the magnetic field $U_{\rm mag}=B^2/2\mu_0=\frac{1}{2}\epsilon_0c^2B^2$
- Averaging over pitch angle (assumed isotropic) gives

$$-\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{4}{3}c\sigma_{\mathrm{T}}U_{\mathrm{mag}}\beta^{2}\gamma^{2}$$

16

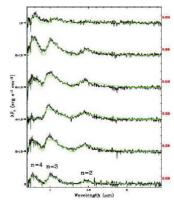
Cyclotron radiation

- Cyclotron radiation is emitted by non-relativistic or mildly relativistic electrons (γ ≈ 1)
 - at cyclotron frequency $v_g = eB/(2\pi m_e)$ for non-relativistic
 - · at harmonics of gyrofrequency,

$$\nu_{\ell} = \frac{\ell}{1 - \beta_{\parallel} \cos \theta} \frac{eB}{2\pi \gamma m_e}$$

for mildly relativistic

- Cyclotron radiation is polarised: linearly if B perpendicular to line of sight, circularly if B along line of sight, elliptically if in between
 - cyclotron lines are seen in some pulsars and close binary systems



Synchrotron radiation and beaming

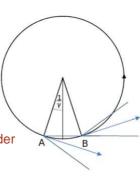
 Lorentz transformation of cos φ is

$$\cos \phi = \frac{\cos \phi' + \beta}{1 + \beta \cos \phi'}$$

- for cos φ' = 0 this gives sin φ = 1/γ,
 i.e. radiation becomes concentrated in a narrow cone around particle direction of motion
- radiation is only visible for time $\Delta t = 1/\big(\gamma^2 \omega_q \sin\theta\big)$

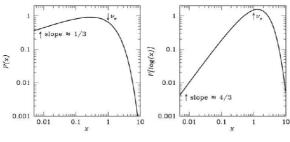
and hence has characteristic frequency of order $v_s \simeq \gamma^2 \omega_g \sin \theta$

where θ is the pitch angle



18

Synchrotron radiation: full spectrum



Estimate is correct order of magnitude and has correct dependence on γ

These spectra are in terms of

$$x = \frac{v}{v_c} = \frac{2v}{3\gamma^2 v_q \sin \theta}$$

Note that the spectrum is quite sharply peaked—often adequate to assume all radiation emitted at v_c

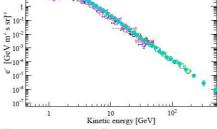
This is for a single electron at fixed γ

Synchrotron radiation: power law

- Cosmic-ray electrons have power-law spectrum
- Assume all electrons radiate at frequency $\gamma^2 v_a$

Spectral emissivity is

$$j_{\nu} d\nu = -\frac{dE}{dt} N(E) dE$$



- $dE/dt \propto B^2 \gamma^2$; $N(E) \propto E^{-\delta} \propto (\nu/\nu_a)^{-\delta/2}$; $dE \propto d\nu/(\nu\nu_a)^{1/2}$; $\nu_a \propto B$
- Keeping only dependence on v and B, we have $j_{\nu} \propto B^{(\delta+1)/2} \nu^{-(\delta-1)/2}$
 - if electron spectral index is ~3. expect synchrotron spectral index ~1
 - · this is in reasonable agreement with observation
 - polarisation turns out to be $(\delta + 1)/(\delta + \frac{7}{3})$: ~75% for δ ~ 3

Synchrotron spectrum cut-offs

- Lifetime of electron of initial energy E is E/(-dE/dt)
 - · this means that synchrotron spectrum will have a high-energy cut-off defined by the lifetime of the high-energy electrons
 - form of cut-off depends on how electrons are injected (over time vs instantaneously)
- Low-energy cut-off is introduced by source becoming opaque to its own radiation: synchrotron self-absorption

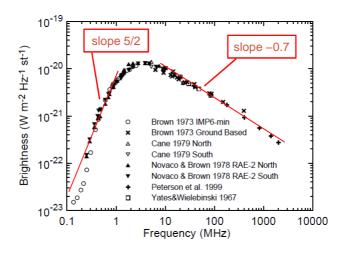
• brightness temperature is defined as
$$T_b = \frac{\lambda^2}{2k} \frac{S_{\nu}}{\Omega}$$
 flux source solid angle

$$T_b = \frac{1}{2k} \frac{1}{\Omega}$$
 • electron effective temperature is
$$T_e = \frac{\gamma m_e c^2}{3k} \simeq \frac{m_e c^2}{3k} \frac{v^{1/2}}{v_g^{1/2}}$$

equating these gives

$$S_{\nu} = 2m_e \Omega \nu^{5/2} / \left(3 \nu_a^{1/2} \right)$$

Synchrotron spectrum of Milky Way



22

Summary

You should read section 2.3 of the notes.

You should know about

- radio emission mechanisms
- radiation from an accelerated charge
- bremsstrahlung
- synchrotron radiation

- The atmosphere is transparent to radio emission (1 mm < λ < 10 m)
- There are many sources of radio emission, including thermal emission from dust and the CMB, line emission, and emission from accelerated charges
 - bremsstrahlung produces a flat spectrum with a v² rise at low frequencies (selfabsorption) and an exponential fall-off at high frequencies
 - synchrotron radiation produces a power law with spectral index ~1, with a v^{5/2} rise at low frequencies and a cut-off at high frequencies from the electron energy
- Synchrotron radiation is diagnostic of the presence of relativistic electrons

