PHY418 PARTICLE ASTROPHYSICS

Introduction: What is particle astrophysics?

What is particle astrophysics?

- Particle astrophysics is the use of particle physics techniques (experimental or theoretical) to address astrophysical questions.
- Topics included:
 - early-universe cosmology
 - inflation (and alternatives), baryogenesis, dark energy
 - cosmic rays
 - · γ-ray astronomy
 - high-energy neutrino astronomy
 - low-energy neutrino astronomy
 - dark matter (see PHY326/426)
- I will focus on high-energy particle astrophysics

These form a coherent field with a lot of common factors—"highenergy particle astrophysics"

PHY418 Syllabus

Introduction

- · brief outline of those topics I am not going to cover in detail
- High-energy particle astrophysics: the observations
 - cosmic rays
 - radio emission
 - high-energy photon emission (X-rays and γ-rays)
 - neutrinos
- Acceleration mechanisms
 - · Fermi second-order
 - diffusive shock acceleration
 - magnetic reconnection
- Sources
 - · case studies of the principal source types

PHY418 Resources

- There isn't an ideal course text—so I have basically written one
 - too long to photocopy for you but you can download the pdf from the website (or from the MOLE reading list)
 - www.hep.shef.ac.uk/cartwright/phy418
 - this also contains copies of slides
- The nearest thing to a "proper" course text is Malcolm Longair, *High Energy Astrophysics* 3rd edition, CUP
 - several copies in IC
 - · different organisation and emphasis compared to course
 - rather more detail in the mathematics
 - · it is in SI units-note that a lot of texts at this level are in cgs

PHY418 Assessment

- End-of-semester exam (85%)
 - One compulsory question (30 marks)
 - Any two from four optional questions (20 marks each)
 - A practice exam will be provided since this is a new module
- Also short class tests (15%)
 - · designed to test your ability to apply the taught material to problems
 - similar to exam questions (but without bookwork)
 - 3 (two during Observations, and one after Acceleration Mechanisms)
 - open notes format

Early-universe cosmology

Early-universe cosmology

In the early universe, energies are extremely high

- · appropriate physics is very high-energy particle physics
 - GUTs, string theory??
- consequences in early universe
 - inflation (breakdown of GUT?)
 - baryogenesis (matter-antimatter asymmetry)
- consequences in later universe
 - dark energy (vacuum energy? scalar field?)
 - dark matter (lightest supersymmetric particle? axion?)
- Particle physics of early universe is very difficult to test
 - · energies are much too high for feasible accelerators

notes section 1.2.1

Inflation

- Observational evidence shows that the universe is
 - geometrically flat (*k* = 0 in Robertson-Walker metric)
 - extremely uniform at early times ($\Delta T/T \sim 10^{-5}$ in CMB)
 - not precisely uniform (with nearly scale invariant fluctuations)
- These properties are unexpected in the classical Big Bang model
 - no reason in GR why overall geometry should be flat
 - and if it is not flat originally it evolves rapidly in the direction of increased curvature
 - no expectation that the CMB temperature should be uniform
 - horizon distance expands faster than universe, so causally connected regions at ~400000 years correspond to only ~2° on sky now
 - if initial conditions force it to be uniform, no explanation for the fact that it is not *quite* uniform

Inflation

- Observational features can be accounted for by inflation
 - · period of very fast (~exponential) expansion in very early universe

Inflation and the inflaton

- Exponential expansion requires equation of state $P = -\mathcal{E}$ (vacuum energy)
 - this can be approximated by a scalar field (the *inflaton*) φ:

$$\mathcal{E}_{\phi} = \frac{1}{2\hbar c^3} \dot{\phi}^2 + V(\phi);$$
$$P_{\phi} = \frac{1}{2\hbar c^3} \dot{\phi}^2 - V(\phi);$$

• if the kinetic term is small this is almost a vacuum energy

- this is very similar to the Higgs field (but expected mass of inflaton » Higgs mass)
 - most extensions to Standard Model (e.g. supersymmetry) predict more Higgs fields
- various models of inflationary cosmology exist
 - testable using CMB polarisation, cf. BICEP2

- must be generatedSakharov conditions:
 - B must be violated
 - reactions must take place out of thermodynamic equilibrium
 - · C and CP must be violated

 problem: requires first-order phase transition to satisfy out-of-equilibrium condition, and this requires a light Higgs (<75 GeV/c², cf. 126 GeV/c²)

INTRODUCTION TO PARTICLE ASTROPHYSICS

Dark Energy and Dark Matter

Dark energy

- There is a great deal of observational evidence from astrophysics and cosmology that the expansion of the universe is currently accelerating
 - requires a component with equation of state $P = w\mathcal{E}$ where w < -1/3(w = -1 is a vacuum energy or cosmological constant, Λ)
- Vacuum energy is "natural" because of spontaneous pair creation (uncertainty principle)
 - but "natural" value of Λ is ~10^{120} times too large!

Models of dark energy

- Vacuum energy plus weak anthropic principle
 - if A had its "natural" value, we would not exist, therefore A must be "unnaturally" small
 - works best in multiverse models such as chaotic inflation (there are then many other universes with "natural" A and no life)
- Scalar field (as in inflation)
 - in this case the effective value of Λ will evolve over time
 - in some "tracker" models it is constrained to stay close to the density of radiation or matter
- Modified gravity
 - · especially in models with extra dimensions

Dark matter

- Much observational evidence that most matter in the universe is (a) non-luminous and (b) non-baryonic
 - non-luminous:
 - rotation curves of galaxies
 - gravitational potential of galaxy clusters
 - weak lensing maps
 - non-baryonic
 - comparison of light-isotope abundances with gravitational mass
 - comparison of X-ray luminosity of clusters with gravitational potential
 - power spectrum of CMB anisotropies

Dark matter properties

- From observations, dark matter must
 - not absorb or emit light (and hence, not interact electromagnetically)
 - because it is not seen, in emission or absorption, at any wavelength, and from CMB power spectrum which implies it does not interact with photons
 - not be hadronic (i.e. strongly interacting)
 - from discrepancy between light-element abundances and gravitational mass measurements
 - be non-relativistic at z ~ 3000
 - · so that it can be bound in galaxy-sized potential wells when structures form
 - · be stable or very nearly so
 - · because mass measurements in local universe agree with CMB
- No Standard Model particle satisfies this list
 - neutrinos are closest, but are relativistic at z ~ 3000 ("hot")

20

Dark matter candidates

	WIMPs	SuperWIMPs	Light G	Hidden DM	Sterile v	Axions
Motivation	GHP	GHP	GHP/NPFP	GHP/NPFP	v Mass	Strong CP
Naturally Correct Ω	Yes	Yes	No	Possible	No	No
Production Mechanism	Freeze Out	Decay	Thermal	Various	Various	Various
Mass Range	GeV-TeV	GeV-TeV	eV-keV	GeV-TeV	keV	µeV-meV
Temperature	Cold	Cold/Warm	Cold/Warm	Cold/Warm	Warm	Cold
Collisional				\checkmark		
Early Universe		$\sqrt{}$		\checkmark		
Direct Detection	$\sqrt{}$			1		$\sqrt{}$
Indirect Detection	$\sqrt{}$	\checkmark		\checkmark	$\sqrt{}$	
Particle Colliders	$\sqrt{}$	$\sqrt{}$	~~	\checkmark		

GHP = Gauge Hierarchy Problem; NPFP = New Physics Flavour Problem $\sqrt{2}$ = possible signal; $\sqrt{2}$ = expected signal

Jonathan Feng, ARAA 48 (2010) 495 (highly recommended)

WIMPs

- Weakly Interacting Massive Particles
 - predicted by various extensions of the Standard Model, the most popular and widely studied being **supersymmetry** (SUSY)
 - in most variants of SUSY the lightest supersymmetric particle is absolutely stable
 - it is a "neutralino", $\tilde{\chi}_1^0$ (a mix of the SUSY partners of the h, H, γ and Z)
- These can be detected by identifying the recoil of an atomic nucleus struck by the WIMP
 - SUSY neutralinos can also be detected indirectly by identifying their annihilation products from regions of high WIMP density, e.g. the centre of the Sun
 - it is also possible that WIMPs could be produced at the LHC and identified as missing energy/momentum (they would not interact in the detectors)

Axions

- The axion is a hypothetical particle arising from attempts to understand why the strong interaction conserves CP • in the Standard Model there is no reason why it should do so
- Axions are expected to be extremely light (µeV-meV), but are "cold" because they are not produced thermally
 - they arise from a phase transition in the very early universe
- Unlike WIMPs, axions do couple—extremely weakly—to photons and can be detected by the Primakoff effect
 - · resonant conversion of axion to photon in highly tuned magnetic field
 - this coupling is the basis of the ADMX experiment (ask Ed Daw...)

INTRODUCTION TO PARTICLE ASTROPHYSICS

Low energy neutrino astrophysics

Solar neutrinos

- Hydrogen fusion *must* involve neutrino emission:
 - $4 \, {}^{1}\text{H} \rightarrow {}^{4}\text{He} + 2e^{+} + 2v_{e}$
 - two protons get converted to two neutrons—must emit 2e⁺ to conserve charge, then require $2\nu_e$ for lepton number
 - must be electron neutrinos as insufficient energy to produce μ⁺ or τ⁺
- Many routes to the final result
 - Q-values, and hence neutrino energies, vary

Supernova neutrinos

- 99% of the energy of a core-collapse supernova comes out as neutrinos
 - neutronisation pulse, p + e⁻ \rightarrow n + v_e
 - thermal pair production
- Verified when neutrinos detected from SN 1987A
 - only 24, but enough to confirm energy scale
- Potential for a great deal of interesting physics in the event of a Galactic CCSN
 - thousands of neutrinos would be detected

Summary

You should read sections 1.2, 1.3, 1.5.2, 1.5.3 and 1.6 of the notes

You should know about

- inflation
- baryogenesis
- dark energy
- dark matter
- solar neutrinos
- supernova neutrinos

- Particle astrophysics covers a very wide range of topics
 - early-universe cosmology
 - dark energy
 - dark matter
 - low-energy neutrino astrophysics
 - high-energy astrophysics
 - cosmic rays
 - · radio emission from high-energy particles
 - high-energy photons
 - high-energy neutrinos
- This section has summarised the first four of these
 - · rest of course will focus on last topic

- history
- detection techniques
- observed properties

Notes section 2.2

