1

2

20th century cosmology

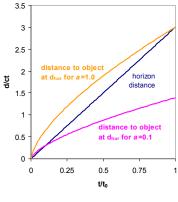
• 1920s – 1990s (from Friedmann to Freedman)

▶ theoretical technology available, but no data

▶ 20th century: birth of observational cosmology

- ► Hubble's law ~1930
- ► Development of astrophysics 1940s 1950s
- ▶ Discovery of the CMB 1965
- Inflation 1981
- ► CMB anisotropies: COBE ~1990

PHY306


20th century cosmology

- 1920s 1990s (from Friedmann to Freedman)
 - ► theoretical technology available, but no data
 - ▶ 20th century: birth of observational cosmology
 - ▶ Hubble's law ~1930
 - Development of astrophysics 1940s 1950s
 - ▶ Discovery of the CMB 1965
 - ▶ Inflation 1981
 - addresses problem of large-scale isotropy of Universe
 - first application of modern particle physics to cosmology

Outstanding Problems

• Why is the CMB so isotropic?

- ► consider matter-only universe:
 - horizon distance $d_{\rm H}(t) = 3ct$
 - ► scale factor a(t) = (t/t₀)^{2/3}
 - therefore horizon expands faster than the universe
- "new" objects constantly coming into view • CMB decouples at $1+z \sim 1000$
 - - ▶ i.e. t_{CMB} = t₀/10^{4.5}
 - $d_{\rm H}(t_{\rm CMB}) = 3ct_0/10^{4.5}$
 - now this has expanded by a factor of 1000 to 3*ct*₀/10^{1.5}
 - ▶ but horizon distance now is 3ct₀
 - so angle subtended on sky by one CMB horizon distance is only $10^{-1.5}$ rad ~ 2° ►
- patches of CMB sky >2° apart should not ► be causally connected

PHY306

Outstanding Problems

- Why is universe so flat?
 - ▶ a multi-component universe satisfies

$$1 - \Omega(t) = -\frac{kc^2}{H(t)^2 a(t)^2 R_0^2} = \frac{H_0^2 (1 - \Omega_0)}{H(t)^2 a(t)^2}$$

and, neglecting Λ , $\left(\frac{H(t)}{H_0}\right)^2 = \frac{\Omega_{r0}}{a^4} + \frac{\Omega_{m0}}{a^3}$

- ▶ therefore
 - during radiation dominated era $|1 \Omega(t)| \propto a^2$
 - during matter dominated era $|1 \Omega(t)| \propto a$
 - ▶ if $|1 \Omega_0| < 0.06$ (WMAP), then at CMB emission $|1 \Omega| < 0.00006$
- ▶ we have a fine tuning problem!

PHY306

4

Outstanding Problems

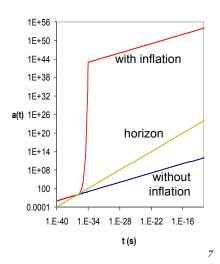
• The monopole problem

- ▶ big issue in early 1980s
 - ► Grand Unified Theories of particle physics → at high energies the strong, electromagnetic and weak forces are unified
 - ► the symmetry between strong and electroweak forces 'breaks' at an energy of ~10¹⁵ GeV (T ~ 10²⁸ K, t ~ 10⁻³⁶ s)
 - this is a phase transition similar to freezing
 - expect to form 'topological defects' (like defects in crystals)
 - point defects act as magnetic monopoles and have mass $\sim 10^{15} \text{ GeV}/c^2 (10^{-12} \text{ kg})$
 - expect one per horizon volume at t ~ 10⁻³⁶ s, i.e. a number density of 10⁸² m⁻³ at 10⁻³⁶ s
 - result: universe today completely dominated by monopoles (not!)

PHY306

Inflation

- All three problems are solved if Universe expands *very* rapidly at some time t_{inf} where 10^{-36} s $< t_{inf} << t_{RRN}$
 - monopole concentration diluted by expansion factor
 - ▶ increase radius of curvature
 - visible universe expands from causally connected region
- this is *inflation* Alan Guth and

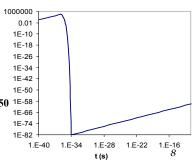

Andrei Linde, 1981 ₆

5

PHY306

Inflation and the horizon

- Assume large positive cosmological constant Λ acting from t_{inf} to t_{end}
- then for $t_{inf} < t < t_{end}$ $a(t) = a(t_{inf}) \exp[H_i(t - t_{inf})]$
 - $H_i = (\frac{1}{3} \Lambda)^{1/2}$
 - ► if A large a can increase by many orders of magnitude in a very short time
- Exponential inflation is the usual assumption but a power law $a = a_{inf}(t/t_{inf})^n$ works if n > 1


PHY306

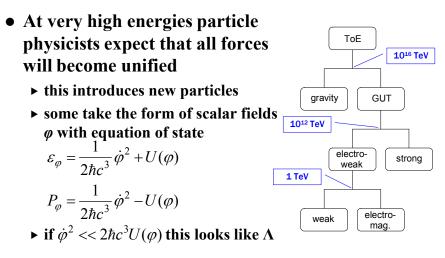
Inflation and flatness

- We had $1 \Omega(t) = -\frac{kc^2}{H(t)^2 a(t)^2 R_0^2} = \frac{H_0^2 (1 \Omega_0)}{H(t)^2 a(t)^2}$
 - ► for matter-dominated universe $1 \Omega \propto a$
 - ► for cosmological constant *H* is constant, so $1 \Omega \propto a^{-2}$

Ω – 1

- Assume at start of inflation
 |1 Ω| ~ 1
- Now $|1 \Omega| \sim 0.06$
 - At matter-radiation equality
 |1 − Ω| ~ 2×10⁻⁵, t ~ 50000 yr
 - \blacktriangleright at end of inflation $|1-\Omega| \sim 10^{-50}$ $_{\text{\tiny 1E-58}}^{\text{\tiny 1E-58}}$
 - ▶ so need to inflate by $10^{25} = e^{58}$

PHY306

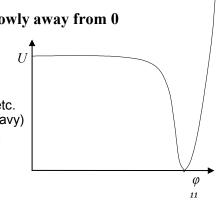

What powers inflation?

• We need $H_{inf}(t_{end} - t_{inf}) \ge 58$

- ► if $t_{\text{end}} \sim 10^{-34}$ s and $t_{\text{inf}} \sim 10^{-36}$ s, $H_{\text{inf}} \sim 6 \times 10^{35}$ s⁻¹
- ► this implies $\Lambda \sim 10^{72} \text{ s}^{-2}$
- energy density ε_Λ ~ 6 × 10⁹⁷ J m⁻³ ~ 4 × 10¹⁰⁴ TeV m⁻³
 cf. current value of Λ ~ 10⁻³⁵ s⁻², ε_Λ ~ 10⁻⁹ J m⁻³ ~ 0.004 TeV m⁻³
- We also need an equation of state with negative pressure
 - ► $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^2} (\varepsilon + 3P)$ \rightarrow accelerating expansion needs P < 0► cosmological constant Λ has $\varepsilon = -P$

PHY306

Inflation and particle physics



PHY306

10

Inflation with scalar field


- Need potential U with broad nearly flat plateau near $\varphi = 0$
 - ▶ metastable false vacuum
 - ▶ inflation as *φ* moves very slowly away from 0
 - stops at drop to minimum (true vacuum)
 - decay of inflaton field at this point reheats universe, producing photons, quarks etc. (but not monopoles – too heavy)
 - equivalent to latent heat of a phase transition

PHY306

Inflation and structure

- Uncertainty Principle means that in quantum mechanics vacuum constantly produces temporary particle-antiparticle pairs
 - ▶ minute density fluctuations
 - ► inflation blows these up to macroscopic size
 - ► seeds for structure formation
- Expect spectrum of fluctuations to be approximately scale invariant
 - ▶ possible test of inflation idea?

PHY306

Inflation: summary

• Inflation scenario predicts

- ▶ universe should be very close to flat
- CMB should be isotropic, with small scale invariant perturbations
- monopole number density unobservably low
- Inflation scenario does not predict
 - current near-equality of $\Omega_{\rm m}$ and Ω_{Λ}
 - ► matter-antimatter asymmetry

• Underlying particle physics very difficult to test

▶ energy scale is much too high for accelerators

PHY306

State of Play, ~1995

- General features of "Standard Cosmological Model" reasonably well established
 - ▶ "Smoking gun" is blackbody spectrum of CMB
 - > Inflation required to explain observed isotropy and flatness
- Exact values of parameters not well established at all
 - H_0 uncertain to a factor of 2
 - Ω uncertain to a factor of 5 or so
 - individual contributions to Ω unclear, apart from baryons (defined by nucleosynthesis)
- Further progress requires better data
 - ▶ forthcoming in the next decade...

PHY306