1

2

20th century cosmology

• 1920s – 1990s (from Friedmann to Freedman)

▶ theoretical technology available, but no data

▶ 20th century: birth of observational cosmology

- ► Hubble's law ~1930
- ► Development of astrophysics 1940s 1950s
- ▶ Discovery of the CMB 1965
- ▶ Inflation 1981
- ► CMB anisotropies: COBE ~1990

PHY306

20th century cosmology

- 1920s 1990s (from Friedmann to Freedman)
 - ► theoretical technology available, but no data
 - ▶ 20th century: birth of observational cosmology
 - ► Hubble's law ~1930
 - Development of astrophysics 1940s 1950s
 - ▶ Discovery of the CMB 1965
 - "smoking gun" for the Hot Big Bang model
 - now the main tool for precision cosmology (see later)

The Cosmic Microwave Background: Theory

• Prediction of CMB trivial in Hot Big Bang model

- ▶ hot, ionised initial state should produce thermal radiation
- ▶ photons decouple when universe stops being ionised (last scattering)
- expansion by factor a cools a blackbody spectrum from T to T/a
- therefore we should now see a cool blackbody background
 - Alpher and Herman, 1949, "a temperature now of the order of 5 K"
 - Dicke et al., 1965, "<40 K"
 note that the Alpher and Herman prediction had been completely forgotten at this time!

PHY306

The Cosmic Microwave Background: Theory

- Blackbody background radiation is a natural consequence of the *whole* universe having been in thermal equilibrium at *one* particular past time
- Continuous creation of radiation does not lead to a blackbody background
 - see photons from different distances, created at different times, with different redshifts
 - superposition of several blackbody spectra with different temperatures is not a blackbody

4

The Cosmic Microwave **Background: Observations**

- First seen in 1941 (yes, 1941)
 - ▶ lines seen in stellar spectra identified as interstellar CH and CN (Andrew McKellar, theory; Walter Adams, spectroscopy)
 - ▶ comparison of lines from different rotational states gave "rotational temperature" of 2-3 K
 - ▶ unfortunately Gamow et al. do not seem to have known about this

spectrum of ζ Oph, Mt Wilson coudé spec., Adams 1941

PHY306

The Cosmic Microwave **Background: Observations**

• Discovered in 1965

- ▶ Penzias and Wilson observe excess "antenna temperature" of 3.5±1.0 K from the Holmdel microwave horn
- ▶ interpreted by Dicke et al. at Princeton
 - they had independently rediscovered the prediction and were just about to start looking for the radiation!
- ▶ note: this is one point (not a blackbody spectrum!)

The Cosmic Microwave Background: Spectrum

The Cosmic Microwave Background: Spectrum

- Is the spectrum a blackbody?
 - ► Balloon measurements by Woody and Richards (1981) no!
 - higher temperature than the long wavelength measurements
 - spectrum more peaked
- much theoretical interest, but data were simply wrong
 - CN measurements by Meyer and Jura, 1985
 - ▶ temperature back to 2.74 K (not 2.96)
 - ► no evidence for non-blackbody

CMB Structure

- COBE saw:
 - ▶ a dipole anisotropy of 0.1%
 - ▶ we are moving relative to the CMB rest frame
 - ▶ random anisotropies of ~10⁻⁵
 - ▶ these represent density fluctuations in the early universe
 - ► COBE's angular resolution was not good, so it mapped only very large-scale fluctuations (~10°) - superclusters, not galaxies
- revisit this later in the course

Observations & the Hot Big Bang

- Predictions of Hot Big Bang model ~mid 1960s
 - background radiation ("smoking gun")
 - discovered by accident in 1965, but about to be found on purpose!
 - ▶ age of universe $\leq 1/H_0$
 - ▶ reasonably OK by this time
 - discovery of quasars helped establish evolution
 - primordial deuterium and helium abundance
 - calculated by Jim Peebles, 1966
- Really a set of models, so need to measure parameters

PHY306

Big Bang Nucleosynthesis

- First detailed calculations by Wagoner, Fowler and Hoyle
- Basic principles
 - ► at very high energies neutrons and protons interconvert: p + e⁻ ↔ n + v
 - ▶ neutron:proton ratio given by exp(-∆mc²/kT) where ∆m is the neutron-proton mass difference and T is the temperature at which the neutrinos "freeze out" (~10¹⁰ K)
 - ▶ this is ~1:5

Big Bang Nucleosynthesis

Big Bang Nucleosynthesis

- Final yields of ²H, ³He, ⁴He and ⁷Li depend on
 - ▶ the neutron lifetime (measured in lab)
 - ▶ 885.7±0.8 s (PDG, 2004)
 - ▶ the number of neutrino species (measured in e⁺e⁻)
 - because in radiation dominated era $H^2 \propto \rho_{rel} = \rho_v + N_v \rho_v$
 - ► 2.984±0.008 (combined LEP experiments)
 - ► *H* (measured by HST, WMAP)
 - ▶ 72±8 km/s/Mpc (HST), 70.1±1.3 km/s/Mpc (WMAP)
 - baryon density (i.e. number density of protons+neutrons)

Light elements: observations

- Helium 4
 - ▶ measure in spectra of Pop. II stars
 - ► also produced in stars: big correction factors
- Helium 3
 - ▶ measured in radio (spin flip of ³He⁺ at 3.46 cm)
- Deuterium
 - ▶ lines can be separated from ¹H
 - currently best measured isotope
- Lithium 7
 - ▶ measure in spectra
 - also produced by cosmic rays, and destroyed by stars
 - results are currently not concordant

PHY306

Linsky, Sp. Sci. Rev. 106 (2003) 49 15

Big Bang Nucleosynthesis

- Current abundances Fields and Sarkar, PDG 2008
 - ► D/H = $(2.84\pm0.26) \times 10^{-5}$
 - ▶ $^{7}\text{Li/H} = (1.23 \pm 0.06) \times 10^{-10}$
 - but could be factor of 2 higher
 - ► $Y = 0.249 \pm 0.009$
 - ³He is only measured in our Galaxy systematics too high to be useful
- ⁷Li somewhat inconsistent
 - but may be destroyed in the early universe or in stars
 - D/H is consistent with WMAP Ω_b

Case for the Hot Big Bang

- The Cosmic Microwave Background has an isotropic blackbody spectrum
 - it is extremely difficult to generate a blackbody background in other models
- The observed abundances of the light isotopes are reasonably consistent with predictions
 - ▶ again, a hot initial state is the natural way to generate these
- Many astrophysical populations (e.g. quasars) show strong evolution with redshift

▶ this certainly argues against any Steady State models

PHY306

Outstanding Problems

- Why is the CMB so isotropic?
 - ▶ horizon distance at last scattering << horizon distance now
 - ▶ why would causally disconnected regions have the same temperature to 1 part in 10⁵?
- Why is universe so flat?
 - If Ω ≠ 1, Ω evolves rapidly away from 1 in radiation or matter dominated universe
 - but CMB analysis (later!) shows Ω = 1 to high accuracy so either Ω ≡ 1 (why?) or Ω is fine tuned to very nearly 1
- How do structures form?
 - ▶ if early universe is so very nearly uniform

PHY306

 \rightarrow inflation ¹⁸

17

9