20th century cosmology

• 1920s – 1990s (from Friedmann to Freedman)

▶ theoretical technology available, but no data

▶ 20th century: birth of observational cosmology

- ► Hubble's law ~1930
- ► Development of astrophysics 1940s 1950s

1

2

- ▶ Discovery of the CMB 1965
- Inflation 1981
- ► CMB anisotropies: COBE ~1990

PHY306

20th century cosmology

- 1920s 1990s (from Friedmann to Freedman)
 - ▶ theoretical technology available, but no data
 - ▶ 20th century: birth of observational cosmology
 - ▶ Hubble's law ~1930
 - Development of astrophysics 1940s 1950s
 - understanding of stellar structure and evolution
 - beginnings of quantitative predictions in cosmology
 birth of the Big Bang and Steady State models
 - beginnings of non-optical astronomy
 - radio astronomy (1940s), satellites (1957 on)

State of Play, 1940

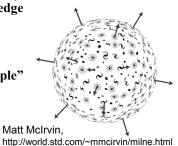
• Hydrogen fusion finally understood

- ▶ pp chain, Bethe and Crichton, 1938
- ► CNO cycle, Bethe, 1939
- Hubble constant still ~500 km/s/Mpc
 - ▶ Hubble time ~2 Gyr, recognised as problem
- Most cosmological papers basically playing with the maths
 - ▶ not enough data to produce useful constraints
 - different theories owe more to differences in philosophy than anything else

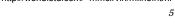
PHY306

Cosmological models

- Theories of the 1930s
 - ► general relativistic cosmologies
 - Friedmann, Lemaître, Robertson
 - "kinematic cosmology"
 - ► Milne
 - special but not general relativity
 - finite "bubble" of galaxies expanding into pre-existing empty space

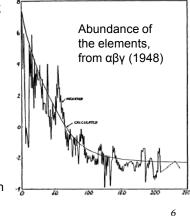

- Theories of the 1940s
 - ► Hot Big Bang
 - George Gamow, Ralph Alpher, Robert Herman
 - driven by nuclear
 - physics
 - main prediction not tested for ~20 years!
 - Steady State
 - Fred Hoyle, Herman Bondi, Thomas Gold
 - driven by philosophy
 - produced unambiguous predictions

PHY306


Milne cosmology

- Galaxies are created at one point in a flat spacetime
- Galaxies behave as massless test particles
 ▶ then "trivially" get v = H₀d (faster particles move further)
- Special relativity holds
 - Lorentz contraction lets us have infinitely many galaxies (almost all right at the edge of our expanding bubble)
- No special locations
 - Milne was the first to state this "Cosmological [or Copernican] Principle"
- This is essentially just the $\Omega = 0$, k = -1 "curvature only" model

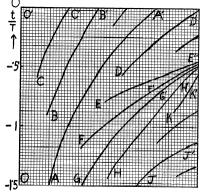
► (in slightly odd coordinates)



PHY306

Hot Big Bang

- Principal idea: assume initial ultradense state is hot (originally, hot neutron gas)
 - this is not trivial: original "big bang" models (Lemaître) had a cold big bang
 - generate heavy elements by combining neutrons
 - ► this is wrong
 - no stable isotopes with mass 5 or 8
 - heavy element content of universe not uniform
 - expect relic blackbody radiation
 - hot dense initial state generates thermal spectrum
 - subsequent expansion redshifts it
 - age of universe $\leq 1/H_0$
 - awkward at the time, because H_0 high

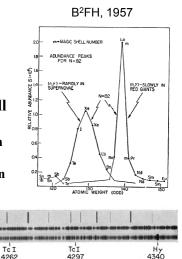


PHY306

Steady State

- Principal idea: "Perfect Cosmological Principle"
 - we are located neither at a special place in space nor at a special time
 - ▶ hence large-scale appearance
 - of universe is always the same - same density
 - same Hubble parameter
 - infinite age
 - implication: matter must be created as universe expands
 - creation rate is very small, so essentially unobservable
 - ► invented simultaneously by Hoyle and by Bondi & Gold
 - critical point: very constrained, therefore predictive, model

PHY306


galaxy positions over time, from 7 Bondi & Gold 1948

Nucleosynthesis

Cal Tcl 4227 4238

4262 technetium lines in R Andromedae, Paul Merrill

- Modern theory of stellar nucleosynthesis developed through 1950s
 - ▶ technetium seen in red giant spectra
 - heavy element abundance inversely correlated with age
- clearly superior to αβy theory for all but the lightest nuclides
 - helium abundance not very well known at this time
 - suggested sites of deuterium production ► atmospheres
 - ▶ nebulae
 - light elements not a smoking gun

State of Play, 1960

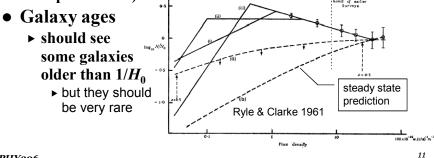
Big Bang cosmology

- model for nucleosynthesis largely disproved
 - stellar nucleosynthesis appears to work well
 - inverse correlation with age, existence of unstable nuclei
- prediction of cosmic background largely forgotten!
- quantitative predictions difficult because of free parameters
 - not only H, Ω, k, but also evolution, inhomogeneity

- Steady State cosmology
 - assumes all nucleosynthesis stellar
 - helium, lithium, deuterium possible but not definite problems
 - requires new physics
 continuous creation of matter (not observable!)
 - extremely highly constrained
 no evolution,
 - no inhomogeneitiestherefore provides reliable
 - predictions

observational cosmologists can aim to test Steady State model

PHY306


The Steady State model

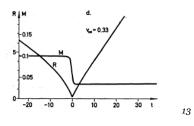
- *H* always constant, so $da/dt = H_0 a$ or $a \propto \exp(H_0 t)$
- ρ always constant, so must have M/V = constant
 - therefore $dM/dt = \rho dV/dt = 3\rho H_0 V$
 - ▶ for a critically dense universe with H₀ = 72 km/s/Mpc this gives a creation rate of 6.8 × 10⁻⁴⁴ kg m⁻³ s⁻¹
 - ▶ about one hydrogen atom per cubic kilometre per year
 - this is obviously not detectable by reasonable technology!
 - number density of any extragalactic standard candle should be constant
 - therefore at z<<1 number brighter than flux f should be $\propto f^{-3/2}$
 - at higher z need to correct for redshift and curvature
 - requires understanding of source spectrum

Testing the Steady State Model

Radio galaxy source counts, early 1960s

- excess of faint sources
- actually not conclusive evidence, since most sources unidentified (population of faint Galactic sources would explain effect)

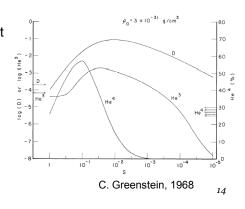
PHY306


Alternative models

- Cosmology ~1960 was not simply Big Bang vs Steady State
 - ► little data, therefore much room for alternative models
 - ▶ motivation generally philosophy rather than data
- Mach's principle
 - ➤ many statements, but basically the argument that accelerating (especially, rotating) frames are determined to be so with reference to the matter content of the Universe as a whole
 - ▶ influential in development of General Relativity (which doesn't satisfy it)
 - ▶ satisfying it in expanding universe requires varying G
- Particle physics
 - ▶ apparent matter-antimatter symmetry of physical laws
 - ▶ why should universe be matter only, not matter-antimatter symmetric?

Plasma universe

- Principles: matter-antimatter symmetry, no new laws of physics
 - ► Klein & Alfvén (1962, 1965)
- Initial state: dilute plasma (matter-antimatter symmetric)
 - ► collapses under gravity
 - ► at some point radiation pressure converts collapse to expansion
 - magnetic fields induce separation of matter and antimatter


- Problem:
 - size of "metagalaxy" limited by requirement that it not form black hole
 - visible universe has an edge
 - expect anisotropy

PHY306

Brans-Dicke cosmology

- Alternative relativistic theory of gravity
 - ▶ gravitational force generated by scalar field $\phi = \frac{4+2\omega}{3+2\omega}\frac{1}{G}$
 - $\blacktriangleright \omega$ is a constant > 5
 - GR recovered if $\omega = \infty$
 - neither ϕ nor G constant
- Problems
 - ► experimental bounds on variation of *G*
 - model tends not to make any helium!
- Recently resurfaced in string theories

PHY306

Triumph of the Hot Big Bang

• State of play in early 1960s

- ▶ main models: Hot Big Bang, Steady State
- ▶ minor model: Brans-Dicke cosmology
- ▶ radio source counts disfavour steady state
 - ► but situation unclear because faint sources unidentified

• State of play in late 1960s

Hot Big Bang rules, Steady State dead, Brans-Dicke fairly dead

• Mid-1960s saw critical advance in available data

► discovery of microwave background

PHY306