

20th century cosmology

- 1920s – 1990s (from Friedmann to Freedman)
 - theoretical technology available, but no data
 - 20th century: birth of observational cosmology
 - Hubble’s law ~1930
 - Development of astrophysics 1940s – 1950s
 - Discovery of the CMB 1965
 - Inflation 1981
 - CMB anisotropies: COBE ~1990

- 1920s – 1990s (from Friedmann to Freedman)
 - theoretical technology available, but no data
 - 20th century: birth of observational cosmology
 - Hubble’s law ~1930
 - from antiquity Universe had been assumed to be static
 - relativity naturally expects universe to expand or contract, but very few people took this literally
 - Alexander Friedmann
 - Georges Lemaitre
 - not Einstein!
 - expansion eventually discovered by observation
The expanding universe

- At $z << 1$ all cosmological models expect a linear behaviour, $z \propto d$
 - first evidence: Edwin Hubble 1929
 - "the possibility that the velocity-distance relation may represent the de Sitter effect"
 - slope of graph: 465 ± 50 km/s/Mpc or 513 ± 60 km/s/Mpc (individual vs grouped)
 - assumption of linearity
 - no centre to expansion
 - established by 1931 (Hubble & Humason)

Hubble's law

- Timeline
 - 1907: Bertram Boltwood dates rocks to 0.4 – 2.2 Gyr (U-Pb)
 - 1915: Vesto Slipher demonstrates that most galaxies are redshifted
 - 1925: Hubble identifies Cepheids in M31 and M33
 - 1927: Arthur Holmes – "age of Earth’s crust is 1.6 – 3.0 Gyr"
 - 1929: Hubble's constant value of 500 km/s/Mpc implies age of Universe ~2.0 Gyr
 - potential problem here…

- Hubble's law systematics
 - distances mostly depend on $m - M = 5 \log(d/10)$ (luminosity distance)
 - getting M wrong changes d by a factor of $10^{(M - M_{\text{est}})/5}$
 which does not affect linearity (just changes slope)
 - typical systematic error: very difficult to spot
 - Jan Oort expressed doubts very quickly (1931)
 - no-one else till 1951!
Hubble’s distances

- Hubble used
 - Cepheid variables as calibrated by Shapley (1930)
 - brightest stars in galaxies as calibrated by Cepheids
 - total luminosities of galaxies calibrated by Cepheids and brightest stars

Wrong by factor of 2!

Wrong by factor of ~4!

Wrong because calibration wrong

Cepheids

- Shapley (1930):
 - calibration of extragalactic Cepheids based on assumption of consistency with RR Lyrae variables in globular clusters

- Baade (1952):
 - Cepheids in Magellanic Clouds (δ Cephei stars or classical Cepheids) are different from “Cepheids” in globular clusters (W Vir stars or Type II Cepheids)

Typical classical Cepheid and W Vir light curves from the HIPPARCOS database
Cepheids

- Period-luminosity relation
 - RR Lyrae stars
 - period < 1 day
 - \(M \approx 0.7 \) (on horizontal branch)
 - little evidence of dependence on period (does depend on metallicity)
 - W Vir stars
 - period > 10 days
 - post-horizontal-branch low mass stars
 - classical Cepheids
 - period > 1 day
 - post-main-sequence stars of a few solar masses

- Distance error
 - from +0.7 to −0.7: ~ factor 2

Brightest stars

- Idea: brightest stars in all galaxies are about the same absolute magnitude
 - not unreasonable: tip of red giant branch is still used as distance indicator
 - might worry about age and metallicity effects
 - but first be sure you are looking at a star!
 - Hubble wasn’t: he was seeing H II regions (ionised gas around young massive stars)
 - these are much brighter than individual stars
 - difference ~2 mag
Stars and H II regions

M100 spiral arm

History of H_o

Compilation by John Huchra

Baade identifies Pop. I and II Cepheids

“Brightest stars” identified as H II regions

Jan Oort
Hubble Wars

- Distance indicators
 - Stars, clusters, etc.
 - classical Cepheids
 - novae
 - globular clusters
 - planetary nebulae
 - supernovae Ia and II
 - Galaxies
 - Tully-Fisher
 - Fundamental plane
 - Bigger things
 - Sunyaev-Zeldovich effect
 - gravitational lensing

- Sources of uncertainty
 - calibration
 - zero point
 - dependence on age, metallicity, galaxy type, etc.
 - reddening corrections
 - bias
 - Malmquist bias
 - at large distances, you tend to detect brighter than average objects
 - personal biases too!
 - Allan Sandage: low
 - Gerard de Vaucouleurs: high

reasonable convergence only in last decade – see later
Hubble’s law & expansion

- Does Hubble’s law mean universe is expanding (i.e. \(a(t) \) in RW metric not constant)?
 - Alternative hypotheses
 - real explosion at some past time
 - over time \(t \) galaxies travel distance \(d = vt \), so build up Hubble law
 - don’t expect to be at centre of expansion, so don’t expect isotropy
 - “tired light”: light loses energy \(\propto \) distance travelled
 - tested by looking at surface brightness:
 - tired light: object at redshift \(z \) has surface brightness \(\propto (1+z)^{-1} \)
 - expansion: object at redshift \(z \) has surface brightness \(\propto (1+z)^{-4} \)
 - 1 from energy loss, 1 from reduction in reception rate of photons, 2 from relativistic aberration

Tests of tired light

- **Surface brightness**
 - results consistent with expansion
 - correcting for galaxy evolution
- **Supernova light curves**
 - effect of time dilation
- **Cosmic microwave background**
 - not expected to have blackbody spectrum in tired light models

State of Play ~1990

- Hubble’s law $v = H_0d$ well established
 - actual value of H_0 uncertain by a factor of 2
- Interpretation of Hubble’s law well established
 - surface brightness tests indicate expansion, not “tired light”
- Return of worries about age of universe
 - values of H_0 above ~80 km/s/Mpc looking suspiciously inconsistent with globular cluster ages
 - in flat universe without Λ, 80 km/s/Mpc gives age 8 Gyr
 - globular cluster ages from stellar evolution ~12 Gyr