### Modern cosmology 4: The cosmic microwave background

- Expectations
- Experiments: from COBE to Planck
  - ► COBE
  - ▶ ground-based experiments
  - ► WMAP
  - ► Planck
- Analysis
- Results

*PHY306* 

## Analysis of WMAP data: the power spectrum

#### • Resolution and sky coverage

- beam profiles mapped by looking at Jupiter (a microwave source of known size)
  - sizes range from 49' to 13' depending on frequency
  - this corresponds to  $\ell_{max} \sim 800$
- orbit around L2 covers whole sky every 6 months

WMAP beam profiles from L. Page et al, 2003, *ApJS*, **148**, 39



1

2

PHY306

## Analysis of WMAP data: the power spectrum

### • Instrumental noise

- WMAP has 10 radiometer assemblies (each with 2 receivers of different polarisation) covering 5 frequencies
  - derive angular power spectrum by cross-correlating measurements from maps by different radiometers
  - this cancels out noise properties of individual radiometers



*PHY306* 



## **Results**

#### • WMAP team extract parameters including

- ► baryon density  $\Omega_{\rm b}h^2$
- matter density  $\Omega_{\rm m}h^2$
- neutrino mass  $m_v$
- ► Hubble constant *h*
- optical depth to reionisation τ



- ▶ spectral index of fluctuations *n*
- ▶ overall normalisation A

• to WMAP alone or WMAP with various other data

## **Combined Analyses**

- What other data samples can be used?
  - ► WMAP 9-year analysis uses baryon acoustic oscillations (i.e. galaxy redshift surveys) and an independent measurement of H<sub>0</sub>
    - power spectrum of luminous red galaxies can be used instead of standard galaxy survey data
    - ► H<sub>0</sub> = 73.8±2.4 km s<sup>-1</sup> Mpc<sup>-1</sup>, Riess et al. (2011), from SNe Ia at z < 0.1</p>
  - WMAP 5-year analysis used baryon acoustic oscillations and Type Ia supernovae
    - WMAP9 restricts use of SNe Ia because of significant systematic errors

PHY228

| Parameter               | Planck                              | WMAP9                               | <b>W9+BAO</b> + <i>H</i> <sub>0</sub> |
|-------------------------|-------------------------------------|-------------------------------------|---------------------------------------|
| п                       | $0.962 \pm 0.009$                   | $0.972 \pm 0.013$                   | $\boldsymbol{0.971 \pm 0.010}$        |
| τ                       | $\textbf{0.097} \pm \textbf{0.038}$ | $\textbf{0.089} \pm \textbf{0.014}$ | $\textbf{0.088} \pm \textbf{0.013}$   |
| h                       | $\boldsymbol{0.674 \pm 0.014}$      | $0.700 \pm 0.022$                   | $0.693 \pm 0.009$                     |
| $\Omega_{ m b}h^2$ %    | $2.207 \pm 0.033$                   | $2.264 \pm 0.050$                   | $2.266 \pm 0.043$                     |
| $\Omega_{ m cdm} h^2$ % | 11.96 ± 0.31                        | $11.38\pm0.45$                      | $11.57\pm0.23$                        |
| $\Sigma m_{v}$          | <0.23 eV                            | <1.3 eV                             | <0.58 eV*                             |
| $\Omega_{\mathrm{k}}$   | 0.0000±0.00671                      | $-0.037 \pm 0.043$                  | $-0.0027 \pm 0.0039*$                 |
| W                       | $-1.13^{+0.13}_{-0.10}$             | $-1.1 \pm 0.4*$                     | $-1.07\pm0.09*$                       |

# **Results from different data**

PHY306

• = includes ground-based CMB data (SPT, ACT) <sup>1</sup> = includes WMAP polarisation

**Consistency checks** 

- Compare CMB results with other data
  - ► good consistency with galaxy redshift surveys
  - ► not such good consistency with H<sub>0</sub>
    - Planck and, to lesser extent, WMAP9 prefer lower value
    - note that CMB estimates of *H*<sub>0</sub> are rather model dependent



7

PHY306



## **Conclusions**

- Agreed features of best fit cosmological model
  - ▶ the universe is flat to high precision
    - ► as expected from inflation
  - ▶ no evidence of significant neutrino contribution
    - ▶ no hot dark matter
    - number of neutrinos consistent with 3
  - ▶ dark energy is consistent with cosmological constant

▶ w ≃ -1

 $\blacktriangleright \Omega_{\Lambda} \approx 0.7, \Omega_{\rm m0} \approx 0.3, H_0 \approx 70 \text{ km/s/Mpc}$ 

▶ but some disagreement about exact values

PHY306

### Consequences

$$\dot{a}(t)^{2} = H_{0}^{2} \left( \frac{\Omega_{m0}}{a(t)} + (1 - \Omega_{m0}) a(t)^{2} \right)$$

- Universe is dominated by matter and  $\Lambda$
- Universe is currently accelerating

$$\blacktriangleright \ddot{a}(t_0) = H_0^2 (1 - \frac{3}{2} \Omega_{\rm m0}) > 0$$

- ► acceleration started when  $\Omega_{m0}/a^2 = 2(1 \Omega_{m0})a$ , i.e.  $a = 0.613 \pm 0.016$  or  $z = 0.632 \pm 0.043$  (Planck)  $a = 0.600 \pm 0.014$  or  $z = 0.666 \pm 0.039$  (SFH13)
  - consistent with supernova results

PHY306

Consequences

$$\dot{a}(t)^{2} = H_{0}^{2} \left( \frac{\Omega_{m0}}{a(t)} + (1 - \Omega_{m0}) a(t)^{2} \right)$$

can be integrated (slightly messily) to give

$$H_0 t = \frac{2}{3\sqrt{1 - \Omega_{m0}}} \sinh^{-1} \left( \sqrt{\frac{1 - \Omega_{m0}}{\Omega_{m0}}} a^{3/2} \right)$$

which enables us to calculate the age of the universe, proper distances, expansion as a function of time, etc.

PHY306

### Conclusions

- Data from the HST, supernovae, galaxy surveys and the CMB have enabled us to determine cosmological parameters to within a few percent
  - ► different sources are basically consistent—need to wait and see if low Planck H<sub>0</sub> significant
- Data now provide strong constraints on theories

▶ "benchmark" ACDM hard to beat

PHY306

Where are we?

- We have a first class description of the Universe
  - ▶ its content, its age, its likely future
- We do not have good explanations for some aspects
  - ▶ the nature of dark matter (can LHC help?)
  - ► (especially) the nature of dark energy
  - ▶ the actual values of the parameters
- Immense progress in the last 15 years, but much still to do!

*PHY306* 

14