Modern cosmology 4: The cosmic microwave background

- Expectations
- Experiments: from COBE to Planck
 - COBE
 - ground-based experiments
 - WMAP
 - Planck
- Analysis
- Results

Expectations

- Reasonable characteristic size would be Hubble length \(c/H \approx 0.2 \) Mpc at \(z \approx 1100 \)
- Angular diameter distance of surface of last scattering = \(d_p/1100 \approx 3ct_0/1100 \approx 12 \) Mpc
- So characteristic angular size \(\approx 17 \) mrad = 1° (more precisely \(l = 220/\sqrt{\Omega} \))
 - depends on geometry
 - in closed universe given linear size corresponds to larger angle
 - vice versa for open universe

All pictures from Wayne Hu, http://background.uchicago.edu/~whu/intermediate/intermediate.html
Expectations

- Gravity and pressure create oscillations in photon-baryon fluid
 - these give higher “harmonics” in power spectrum
 - baryons add to density but not pressure \rightarrow enhance compression peaks (odd numbers) over rarefaction

red is hot – blue is cold!

Effect on power spectrum

Animations by Wayne Hu:
- curvature/Λ
- baryons
- matter

Animation by Daniel Eisenstein
- Formation of acoustic peak in galaxy surveys

PHY306
Experiments

- Basic aim
 - obtain measurements of $\delta T/T$
 - over as much of the sky as possible
 - with as high an angular resolution as possible

- Problems
 - foreground emission from Galaxy and solar system
 - can be distinguished by different spectrum
 - instrumental noise
 - must minimise
Experiments

- COBE
 - low Earth orbit
 - poor angular resolution so only sensitive to $l < 20$

Next generation after COBE: ground and balloon-based experiments
 - much better angular resolution
 - limited sky coverage
 - limited exposure time

Next generation space-based experiments
 - WMAP and Planck
 - whole-sky coverage with good angular resolution

New ground-based experiments
 - polarisation and high angular resolution
Experiments

BOOMERanG
Balloon Observations Of Millimetric Extragalactic Radiation AND Geophysics

Experiments

DASI
Degree Angular Scale Interferometer
Experiments

VSA Very Small Array

CBI: Cosmic Background Imager
ACBAR: Arcminute Cosmic Background Array Receiver
Experiments

WMAP
Wilkinson Microwave Anisotropy Probe

Planck
launched 14 May 2009
CMB results came out April 2013
Experiments

South Pole Telescope
10 m telescope for mm and sub-mm wavelengths
Measured B-mode polarisation at high ℓ due to gravitational lensing, July 2013

BICEP2
26 cm refractor in cryostat for very low-noise polarisation measurements
Measured B-mode polarisation at low ℓ, March 2014
Unfortunately this seems to have been largely due to dust, not primordial gravitational waves as initially thought
Results

- WMAP measured first three peaks
- Planck measures out to 7th peak
- Planck also measures E-mode polarisation
 - first seen by DASI
 - good cross-check of model

Health Warning...

- CMB data are not the answer to Life, the Universe, and Everything
 - need to combine with other data
 - but together with those other data, do provide unprecedented precision