Modern cosmology 3: The Growth of Structure

- Growth of structure in an expanding universe
- The Jeans length
- Dark matter
- Large scale structure simulations
 - effect of cosmological parameters
- Large scale structure data
 - galaxy surveys
 - cosmic microwave background

Large scale structure simulations

- Simple theory only adequate for small changes in density
- Need big changes
 (e.g. $\rho_{\text{univ.}} \sim 10^{-27}$ kg m$^{-3}$, $\rho_{\text{galaxy}} \sim 10^{-20}$ kg m$^{-3}$)
- Therefore use numerical simulations
 - input cosmological parameters
 - evolve using general relativity
 - may include only dark matter or dark matter + gas
Simulations

- Information from simulations
 - strength of clustering on different scales
 - compare with galaxy surveys
 - evolution of clustering
 - compare with ages of structures such as galaxies and clusters

PHY306

The VIRGO Collaboration 1996

$z = 20.0$

dark matter density

gas density

gas temperature

kinetic SZ

thermal SZ

gas shocks

4 Mpc/h
Large scale structure data

- Galaxy surveys
 - pencil beam
 - e.g. Lyman α lines in quasar spectrum
 - slice of sky
 - e.g. 2dF galaxy redshift survey
 - whole sky (or large piece thereof)
 - e.g. Sloan Digital Sky Survey

Lyman α forest

- Study distribution of neutral hydrogen along particular lines of sight
 - potential information on clustering, metallicity, ionisation level, etc., at redshifts up to 6 or more
 - but systematic errors are difficult to control
Sloan Digital Sky Survey

- Dedicated 2.5-m telescope equipped with 120 megapixel camera and two multi-object spectrographs
- Imaged 8400 square degrees of sky
 - spectra of 930000 galaxies, 120000 quasars, 225000 stars

SDSS Galaxy Map

- Slice of SDSS survey around celestial equator
 - $-1.25^\circ < \delta < +1.25^\circ$
- Galaxies colour coded by stellar population
 - red = old
Results

- Sensitive to $\Omega_m H_0$, which is a different combination from nucleosynthesis
- Analysis is similar to CMB (see later), but expected shape differs
- Best results obtained by combining redshift surveys with WMAP

Analysis of survey data

- Survey data typically produce “maps”
- How do we analyse these?
 - they have finite resolution
 - they may not cover the whole sky
 - we probably don’t care about the actual locations of ‘hot’ and ‘cold’ spots
 - we want to look at strength of variation and characteristic size
The power spectrum

- Consider CMB data, i.e. map of temperature fluctuations δT across sky
 - expand in spherical harmonics: $\frac{\delta T}{T}(\theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{lm} Y_{lm}(\theta, \phi)$
 - consider correlation between pairs of points separated by angle θ:
 $$C(\theta) = \left\langle \frac{\delta T}{T}(\mathbf{n}) \frac{\delta T}{T}(\mathbf{n}') \right\rangle \mathbf{n} \cdot \mathbf{n}' = \cos \theta$$
 - by applying the spherical harmonic expansion this can be expressed as a sum of Legendre polynomials:
 $$C(\theta) = \frac{1}{4\pi} \sum_{l=0}^{\infty} (2l+1) C_l P_l(\cos \theta)$$

- Parameter describing characteristics of map is the coefficient C_l
 - customary to plot $\Delta_T \equiv \sqrt{\frac{l(l+1)}{2\pi} C_l \langle T \rangle}$ vs l
 - this is the contribution per logarithmic interval in l to the total temperature fluctuation δT
 - the multipole number l gives the angular scale: $\theta \sim 180^\circ/l$
The power spectrum

- 3D galaxy surveys are analysed in a similar way
 - expand as Fourier series
 \[\delta(r) = \frac{V}{(2\pi)^3} \int \delta_k e^{-i k \cdot r} \, d^3 k \]
 where each Fourier component \(\delta_k \) is a complex number
 - construct power spectrum using mean square amplitude
 \[P(k) = \left| \langle \delta_k \rangle \right|^2 \]

Will Percival et al., *MNRAS* 401 (2010) 2148

Conclusion

- Large scale structure is very sensitive to cosmological parameters
 - cold vs hot dark matter, \(\Lambda \), etc.
- 2D or 3D maps can be analysed by expanding as spherical harmonics or Fourier series
- Most significant contributors: galaxy surveys (especially SDSS) and CMB