Modern cosmology 2: More about Λ

- Distances at *z* ~1
- Type Ia supernovae
- SNe Ia and cosmology
- Results from the Supernova Cosmology Project, the High z Supernova Search, and the HST
- Conclusions

PHY306

- More astrophysical evidence for accelerating expansion
- Is A constant?
- Cosmological consequences
- Outstanding problems

1

Gravitational lensing and Λ

- Lensing occurs when there is a massive galaxy or cluster between the source and the observer
- How often will this happen?
 - relevant distance is angular diameter distance
 - ► if A > 0, the angular diameter distance is larger, so there are more potential lensing galaxies, so there will be more lensed systems

Gravitational lensing and Λ

- Lens statistics are rather low, so difficult to get good constraints
 - ▶ paper by Mitchell et al. (ApJ 622 (2005) 81) uses **CLASS radio lens survey** plus SDSS galaxy survey
 - ▶ resulting contour similar in orientation to SNe Ia
 - ▶ both measure at *z* ~ 1
 - ▶ result is less precise but consistent

3

PHY306

- Rich clusters of galaxies contain an intracluster medium of hot X-ray emitting gas
- This gas accounts for most of the cluster's baryonic mass
- It is low density and optically thin

4

X-ray clusters and Λ

- If the electron density of the gas is n_e and the core radius of the cluster is $r_{\rm c}$
 - $M_{\rm g} \propto n_{\rm e} r_{\rm c}^{3}$ where $M_{\rm g}$ is the gas mass
 - ► $L_{\rm X} \propto n_{\rm e}^2 r_{\rm c}^{-3}$ where $L_{\rm X}$ is the X-ray luminosity
 - ► so $M_{\rm g} \propto r_{\rm c}^{-3/2} L_{\rm X}^{-1/2}$
- Also, we can use hydrostatic equilibrium to calculate the total mass of the cluster

$$\blacktriangleright M_{\rm tot} \propto r_{\rm c}$$

• Now $r_c = \theta_c d_A$ and $L_X = 4\pi f_X d_L^2 = 4\pi (1+z)^4 f_X d_A^2$ • $M_{\rm o}/M_{\rm tot} \propto (1+z)^2 d_{\rm A}^{3/2}$

5

PHY306

Is Λ constant?

- Remember we parametrise the equation of state as $P = w\varepsilon$
 - w = -1 for Λ ; this gives constant ε

▶ for acceleration require only $w < -\frac{1}{3}$

▶ however all data are consistent with w = -1
▶ non-standard models which agree with data "mimic" simple cosmological constant

-

Is Λ constant?

- It is possible that *w* could vary with time
 - even if w = -1 now, this may not always be true
 - ► might also address "fine tuning" problem of why observed A is so small

PHY306

8

Effects of $\Lambda > o$

• Age of universe is increased

▶ this is a good thing: if $H_0 \sim 70$ km/s/Mpc, $\frac{1}{3}H_0^{-1} \sim 9.3$ Gyr, significantly less than astrophysically estimated ages of globular clusters (~12 Gyr) 30

- Evolution of structure is modified
 - ▶ see later
- Universe will definitely expand forever
 - ▶ even if closed

PHY306

Problems with $\Lambda > 0$

- Why is it so small?
 - ▶ can attempt to estimate likely size of vacuum energy density
 - get values ~ 10^{120} × what we have!
 - ▶ "worst failure of an order of magnitude estimate in the history of physics" (Weinberg)
- Why is Ω_{Λ} so similar to Ω_{m} ?
 - $\Omega_{\rm m}/\Omega_{\Lambda} = 8\pi G\rho/\Lambda \propto 1/a^3$ (if Λ is really constant)
 - ▶ so for most of the history of the universe one is much bigger than the other
 - ▶ why would we happen to live in the brief epoch when they are nearly equal?
- Conclusion: we don't understand the physics of Λ

PHY306

10

Conclusions

- Results from Type Ia supernovae clearly indicate that $\Lambda > 0$
 - gravitational lens statistics and X-ray data from clusters of galaxies support this (so does CMB)
- This improves our description of the universe
 - ▶ age in better agreement with stellar astrophysics
 - ▶ better description of large-scale structure
- But we do not understand how it works
 - ▶ no theory predicts or even explains what we see

11